You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/agents/models/hf.py

69 lines
2.2 KiB

import pytest
import torch
from unittest.mock import Mock
from swarms.agents.models.hf import HuggingFaceLLM
@pytest.fixture
def mock_torch():
return Mock()
@pytest.fixture
def mock_autotokenizer():
return Mock()
@pytest.fixture
def mock_automodelforcausallm():
return Mock()
@pytest.fixture
def mock_bitsandbytesconfig():
return Mock()
@pytest.fixture
def hugging_face_llm(mock_torch, mock_autotokenizer, mock_automodelforcausallm, mock_bitsandbytesconfig):
HuggingFaceLLM.torch = mock_torch
HuggingFaceLLM.AutoTokenizer = mock_autotokenizer
HuggingFaceLLM.AutoModelForCausalLM = mock_automodelforcausallm
HuggingFaceLLM.BitsAndBytesConfig = mock_bitsandbytesconfig
return HuggingFaceLLM(model_id='test')
def test_init(hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm):
assert hugging_face_llm.model_id == 'test'
mock_autotokenizer.from_pretrained.assert_called_once_with('test')
mock_automodelforcausallm.from_pretrained.assert_called_once_with('test', quantization_config=None)
def test_init_with_quantize(hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm, mock_bitsandbytesconfig):
quantization_config = {
'load_in_4bit': True,
'bnb_4bit_use_double_quant': True,
'bnb_4bit_quant_type': "nf4",
'bnb_4bit_compute_dtype': torch.bfloat16
}
mock_bitsandbytesconfig.return_value = quantization_config
HuggingFaceLLM(model_id='test', quantize=True)
mock_bitsandbytesconfig.assert_called_once_with(**quantization_config)
mock_autotokenizer.from_pretrained.assert_called_once_with('test')
mock_automodelforcausallm.from_pretrained.assert_called_once_with('test', quantization_config=quantization_config)
def test_generate_text(hugging_face_llm):
prompt_text = 'test prompt'
expected_output = 'test output'
hugging_face_llm.tokenizer.encode.return_value = torch.tensor([0]) # Mock tensor
hugging_face_llm.model.generate.return_value = torch.tensor([0]) # Mock tensor
hugging_face_llm.tokenizer.decode.return_value = expected_output
output = hugging_face_llm.generate_text(prompt_text)
assert output == expected_output