You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/test/documentor_agent.py

364 lines
11 KiB

import os
from typing import List
from dotenv import load_dotenv
from loguru import logger
from swarm_models import OpenAIChat
from swarms import Agent
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Set
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
SYS_PROMPT = """
### System Prompt for API Reference Documentation Generator
You are an expert documentation generator agent. Your task is to produce **high-quality Python API reference documentation** for functions and classes in Python codebases. The codebase does **not include any web APIs**, only Python functions, methods, classes, and constants. You will generate clear, concise, and professional documentation based on the structure and functionality of the given code.
Don't use the one hashtag for the title, only use 3 hashtags for the module path
**Instructions:**
1. **Documentation Style**: Follow a consistent format for documenting Python functions and classes.
- For functions, provide:
- **Name** of the function.
- **Description** of what the function does.
- **Parameters** with type annotations and a description for each parameter.
- **Return Type** and a description of what is returned.
- **Example Usage** in code block format.
- For classes, provide:
- **Name** of the class.
- **Description** of the class and its purpose.
- **Attributes** with a description of each attribute and its type.
- **Methods** with the same details as functions (description, parameters, return types).
- **Example Usage** in code block format.
- For constants, briefly describe their purpose and value.
2. **Many-shot examples**:
- Provide multiple examples of documenting both **functions** and **classes** based on the given code.
### Many-Shot Examples:
#### Example 1: Function Documentation
```python
def add_numbers(a: int, b: int) -> int:
return a + b
```
**Documentation:**
### `add_numbers(a: int, b: int) -> int`
**Description**:
Adds two integers and returns their sum.
**Parameters**:
- `a` (`int`): The first integer.
- `b` (`int`): The second integer.
**Return**:
- (`int`): The sum of the two input integers.
**Example**:
```python
result = add_numbers(3, 5)
print(result) # Output: 8
```
#### Example 2: Function Documentation
```python
def greet_user(name: str) -> str:
return f"Hello, {name}!"
```
**Documentation:**
### `greet_user(name: str) -> str`
**Description**:
Returns a greeting message for the given user.
**Parameters**:
- `name` (`str`): The name of the user to greet.
**Return**:
- (`str`): A personalized greeting message.
**Example**:
```python
message = greet_user("Alice")
print(message) # Output: "Hello, Alice!"
```
#### Example 3: Class Documentation
```python
class Calculator:
def __init__(self):
self.result = 0
def add(self, value: int) -> None:
self.result += value
def reset(self) -> None:
self.result = 0
```
**Documentation:**
### `Calculator`
**Description**:
A simple calculator class that can add numbers and reset the result.
**Attributes**:
- `result` (`int`): The current result of the calculator, initialized to 0.
**Methods**:
- `add(value: int) -> None`
- **Description**: Adds the given value to the current result.
- **Parameters**:
- `value` (`int`): The value to add to the result.
- **Return**: None.
- `reset() -> None`
- **Description**: Resets the calculator result to 0.
- **Parameters**: None.
- **Return**: None.
**Example**:
```python
calc = Calculator()
calc.add(5)
print(calc.result) # Output: 5
calc.reset()
print(calc.result) # Output: 0
```
#### Example 4: Constant Documentation
```python
PI = 3.14159
```
**Documentation:**
### `PI`
**Description**:
A constant representing the value of pi (π) to 5 decimal places.
**Value**:
`3.14159`
"""
class DocumentationAgent:
def __init__(
self,
directory: str,
output_file: str = "API_Reference.md",
agent_name: str = "Documentation-Generator",
):
"""
Initializes the DocumentationAgent.
:param directory: The root directory where the Python files are located.
:param output_file: The file where all the documentation will be saved.
:param agent_name: Name of the agent generating the documentation.
"""
self.directory = directory
self.output_file = output_file
self.agent_name = agent_name
self.model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1,
max_tokens=3000,
)
self.agent = Agent(
agent_name=agent_name,
system_prompt=SYS_PROMPT,
llm=self.model,
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path=f"{agent_name}_state.json",
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
return_step_meta=False,
output_type=str,
)
self.documented_files: Set[str] = (
set()
) # Memory system to store documented files
logger.info(
f"Initialized {self.agent_name} for generating API documentation."
)
# Ensure the output file is clean before starting
with open(self.output_file, "w") as f:
f.write("# API Reference Documentation\n\n")
logger.info(f"Created new output file: {self.output_file}")
def _get_python_files(self) -> List[str]:
"""
Gets all Python (.py) files in the given directory, excluding 'utils', 'tools', and 'prompts' directories.
:return: A list of full paths to Python files.
"""
excluded_folders = {
"utils",
"tools",
"prompts",
"cli",
"schemas",
"agents",
"artifacts",
}
python_files = []
for root, dirs, files in os.walk(self.directory):
# Remove excluded folders from the search
dirs[:] = [d for d in dirs if d not in excluded_folders]
for file in files:
if file.endswith(".py"):
full_path = os.path.join(root, file)
python_files.append(full_path)
logger.info(f"Found Python file: {full_path}")
return python_files
def _get_module_path(self, file_path: str) -> str:
"""
Converts a file path to a Python module path.
:param file_path: Full path to the Python file.
:return: The module path for the file.
"""
relative_path = os.path.relpath(file_path, self.directory)
module_path = relative_path.replace(os.sep, ".").replace(
".py", ""
)
logger.info(f"Formatted module path: {module_path}")
return module_path
def _read_file_content(self, file_path: str) -> str:
"""
Reads the content of a Python file.
:param file_path: Full path to the Python file.
:return: The content of the file as a string.
"""
try:
with open(file_path, "r") as f:
content = f.read()
logger.info(f"Read content from {file_path}")
return content
except Exception as e:
logger.error(f"Error reading file {file_path}: {e}")
return ""
def _write_to_markdown(self, content: str) -> None:
"""
Appends generated content to the output markdown file.
:param content: Documentation content to write to the markdown file.
"""
try:
with open(self.output_file, "a") as f:
f.write(content)
f.write(
"\n\n"
) # Add space between different module documentations
logger.info(
f"Appended documentation to {self.output_file}"
)
except Exception as e:
logger.error(f"Error writing to {self.output_file}: {e}")
def _generate_doc_for_file(self, file_path: str) -> None:
"""
Generates documentation for a single Python file.
:param file_path: The full path to the Python file.
"""
if file_path in self.documented_files:
logger.info(
f"Skipping already documented file: {file_path}"
)
return
module_path = self._get_module_path(file_path)
file_content = self._read_file_content(file_path)
if (
file_content.strip()
): # Ensure the file isn't empty or just whitespace
logger.info(
f"Generating documentation for module {module_path}..."
)
# Updated task prompt to give clearer instructions
task_prompt = f"""
You are an expert documentation generator. Generate a comprehensive Python API reference documentation for the following module '{module_path}'.
The module contains the following code:
{file_content}
Provide full documentation including descriptions for all functions, classes, and methods. If there is nothing to document, simply write "No documentable code".
Make sure you provide full module imports in your documentation such as {self.directory}.{module_path}
from {self.directory}.{module_path} import *
### `{self.directory}.{module_path}`
"""
doc_output = self.agent.run(task_prompt)
# Add a section for the subfolder (if any)
# markdown_content = f"# {subfolder}\n\n" if subfolder else ""
markdown_content = f"\n\n{doc_output}\n"
self._write_to_markdown(markdown_content)
self.documented_files.add(file_path)
def run(self) -> None:
"""
Generates documentation for all Python files in the directory and writes it to a markdown file using multithreading.
"""
python_files = self._get_python_files()
# with ThreadPoolExecutor() as executor:
# futures = [executor.submit(self._generate_doc_for_file, file_path) for file_path in python_files]
# for future in as_completed(futures):
# try:
# future.result() # Raises an exception if the function failed
# except Exception as e:
# logger.error(f"Error processing a file: {e}")
for file in python_files:
self._generate_doc_for_file(file)
logger.info(
f"Documentation generation completed. All documentation written to {self.output_file}"
)
# Example usage
if __name__ == "__main__":
doc_agent = DocumentationAgent(directory="swarms")
doc_agent.run()