You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
8.4 KiB
315 lines
8.4 KiB
|
|
import faiss
|
|
from langchain.docstore import InMemoryDocstore
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.tools.human.tool import HumanInputRun
|
|
from langchain.vectorstores import FAISS
|
|
from langchain_experimental.autonomous_agents import AutoGPT
|
|
from typing import Dict, List, Optional, Union
|
|
from swarms.agents.message import Message
|
|
from swarms.tools.autogpt import (
|
|
ReadFileTool,
|
|
WriteFileTool,
|
|
compile,
|
|
process_csv,
|
|
load_qa_with_sources_chain,
|
|
WebpageQATool
|
|
)
|
|
from swarms.utils.decorators import error_decorator, log_decorator, timing_decorator
|
|
|
|
# cache
|
|
ROOT_DIR = "./data/"
|
|
|
|
# main
|
|
|
|
|
|
class Worker:
|
|
"""
|
|
Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks,
|
|
it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on
|
|
|
|
Parameters:
|
|
- `model_name` (str): The name of the language model to be used (default: "gpt-4").
|
|
- `openai_api_key` (str): The OpenAI API key (optional).
|
|
- `ai_name` (str): The name of the AI worker.
|
|
- `ai_role` (str): The role of the AI worker.
|
|
- `external_tools` (list): List of external tools (optional).
|
|
- `human_in_the_loop` (bool): Enable human-in-the-loop interaction (default: False).
|
|
- `temperature` (float): The temperature parameter for response generation (default: 0.5).
|
|
- `llm` (ChatOpenAI): Pre-initialized ChatOpenAI model instance (optional).
|
|
- `openai` (bool): If True, use the OpenAI language model; otherwise, use `llm` (default: True).
|
|
|
|
#Usage
|
|
```
|
|
from swarms import Worker
|
|
|
|
node = Worker(
|
|
ai_name="Optimus Prime",
|
|
|
|
)
|
|
|
|
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
|
response = node.run(task)
|
|
print(response)
|
|
```
|
|
|
|
llm + tools + memory
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
ai_name: str = "Autobot Swarm Worker",
|
|
ai_role: str = "Worker in a swarm",
|
|
external_tools=None,
|
|
human_in_the_loop=False,
|
|
temperature: float = 0.5,
|
|
llm=None,
|
|
openai_api_key: str = None,
|
|
):
|
|
self.temperature = temperature
|
|
self.human_in_the_loop = human_in_the_loop
|
|
self.llm = llm
|
|
self.openai_api_key = openai_api_key
|
|
self.ai_name = ai_name
|
|
self.ai_role = ai_role
|
|
self.setup_tools(external_tools)
|
|
self.setup_memory()
|
|
self.setup_agent()
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset the message history.
|
|
"""
|
|
self.message_history = ["Here is the conversation so far"]
|
|
|
|
@property
|
|
def name(self):
|
|
return self.ai_name
|
|
|
|
def receieve(
|
|
self,
|
|
name: str,
|
|
message: str
|
|
) -> None:
|
|
"""
|
|
Receive a message and update the message history.
|
|
|
|
Parameters:
|
|
- `name` (str): The name of the sender.
|
|
- `message` (str): The received message.
|
|
"""
|
|
self.message_history.append(f"{name}: {message}")
|
|
|
|
def send(self) -> str:
|
|
self.agent.run(task=self.message_history)
|
|
|
|
def add(self, task, priority=0):
|
|
self.task_queue.append((priority, task))
|
|
|
|
def setup_tools(self, external_tools):
|
|
"""
|
|
Set up tools for the worker.
|
|
|
|
Parameters:
|
|
- `external_tools` (list): List of external tools (optional).
|
|
|
|
Example:
|
|
```
|
|
external_tools = [MyTool1(), MyTool2()]
|
|
worker = Worker(model_name="gpt-4",
|
|
openai_api_key="my_key",
|
|
ai_name="My Worker",
|
|
ai_role="Worker",
|
|
external_tools=external_tools,
|
|
human_in_the_loop=False,
|
|
temperature=0.5)
|
|
```
|
|
"""
|
|
query_website_tool = WebpageQATool(
|
|
qa_chain=load_qa_with_sources_chain(self.llm)
|
|
)
|
|
|
|
self.tools = [
|
|
WriteFileTool(root_dir=ROOT_DIR),
|
|
ReadFileTool(root_dir=ROOT_DIR),
|
|
process_csv,
|
|
query_website_tool,
|
|
HumanInputRun(),
|
|
compile,
|
|
# VQAinference,
|
|
]
|
|
if external_tools is not None:
|
|
self.tools.extend(external_tools)
|
|
|
|
def setup_memory(self):
|
|
"""
|
|
Set up memory for the worker.
|
|
"""
|
|
try:
|
|
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
|
embedding_size = 1536
|
|
index = faiss.IndexFlatL2(embedding_size)
|
|
|
|
self.vectorstore = FAISS(
|
|
embeddings_model.embed_query,
|
|
index,
|
|
InMemoryDocstore({}), {}
|
|
)
|
|
|
|
except Exception as error:
|
|
raise RuntimeError(f"Error setting up memory perhaps try try tuning the embedding size: {error}")
|
|
|
|
def setup_agent(self):
|
|
"""
|
|
Set up the autonomous agent.
|
|
"""
|
|
try:
|
|
self.agent = AutoGPT.from_llm_and_tools(
|
|
ai_name=self.ai_name,
|
|
ai_role=self.ai_role,
|
|
tools=self.tools,
|
|
llm=self.llm,
|
|
memory=self.vectorstore.as_retriever(search_kwargs={"k": 8}),
|
|
human_in_the_loop=self.human_in_the_loop
|
|
)
|
|
|
|
except Exception as error:
|
|
raise RuntimeError(f"Error setting up agent: {error}")
|
|
|
|
@log_decorator
|
|
@error_decorator
|
|
@timing_decorator
|
|
def run(
|
|
self,
|
|
task: str = None
|
|
):
|
|
"""
|
|
Run the autonomous agent on a given task.
|
|
|
|
Parameters:
|
|
- `task`: The task to be processed.
|
|
|
|
Returns:
|
|
- `result`: The result of the agent's processing.
|
|
"""
|
|
try:
|
|
result = self.agent.run([task])
|
|
return result
|
|
except Exception as error:
|
|
raise RuntimeError(f"Error while running agent: {error}")
|
|
|
|
@log_decorator
|
|
@error_decorator
|
|
@timing_decorator
|
|
def __call__(
|
|
self,
|
|
task: str = None
|
|
):
|
|
"""
|
|
Make the worker callable to run the agent on a given task.
|
|
|
|
Parameters:
|
|
- `task`: The task to be processed.
|
|
|
|
Returns:
|
|
- `results`: The results of the agent's processing.
|
|
"""
|
|
try:
|
|
results = self.agent.run([task])
|
|
return results
|
|
except Exception as error:
|
|
raise RuntimeError(f"Error while running agent: {error}")
|
|
|
|
def health_check(self):
|
|
pass
|
|
|
|
@log_decorator
|
|
@error_decorator
|
|
@timing_decorator
|
|
def chat(
|
|
self,
|
|
msg: str = None,
|
|
streaming: bool = False
|
|
):
|
|
"""
|
|
Run chat
|
|
|
|
Args:
|
|
msg (str, optional): Message to send to the agent. Defaults to None.
|
|
language (str, optional): Language to use. Defaults to None.
|
|
streaming (bool, optional): Whether to stream the response. Defaults to False.
|
|
|
|
Returns:
|
|
str: Response from the agent
|
|
|
|
Usage:
|
|
--------------
|
|
agent = MultiModalAgent()
|
|
agent.chat("Hello")
|
|
|
|
"""
|
|
|
|
# add users message to the history
|
|
self.history.append(
|
|
Message(
|
|
"User",
|
|
msg
|
|
)
|
|
)
|
|
|
|
# process msg
|
|
try:
|
|
response = self.agent.run(msg)
|
|
|
|
# add agent's response to the history
|
|
self.history.append(
|
|
Message(
|
|
"Agent",
|
|
response
|
|
)
|
|
)
|
|
|
|
# if streaming is = True
|
|
if streaming:
|
|
return self._stream_response(response)
|
|
else:
|
|
response
|
|
|
|
except Exception as error:
|
|
error_message = f"Error processing message: {str(error)}"
|
|
|
|
# add error to history
|
|
self.history.append(
|
|
Message(
|
|
"Agent",
|
|
error_message
|
|
)
|
|
)
|
|
|
|
return error_message
|
|
|
|
def _stream_response(
|
|
self,
|
|
response: str = None
|
|
):
|
|
"""
|
|
Yield the response token by token (word by word)
|
|
|
|
Usage:
|
|
--------------
|
|
for token in _stream_response(response):
|
|
print(token)
|
|
|
|
"""
|
|
for token in response.split():
|
|
yield token
|
|
|
|
@staticmethod
|
|
def _message_to_dict(message: Union[Dict, str]):
|
|
"""Convert a message"""
|
|
if isinstance(message, str):
|
|
return {"content": message}
|
|
else:
|
|
return message
|