You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
11 KiB
318 lines
11 KiB
from __future__ import annotations
|
|
|
|
import logging
|
|
import sys
|
|
import warnings
|
|
from typing import (
|
|
AbstractSet,
|
|
Any,
|
|
AsyncIterator,
|
|
Collection,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
from langchain.callbacks.manager import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain.pydantic_v1 import Field, root_validator
|
|
from langchain.schema import Generation, LLMResult
|
|
from langchain.schema.output import GenerationChunk
|
|
from langchain.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
import os
|
|
def get_from_dict_or_env(
|
|
data: Dict[str, Any],
|
|
key: str,
|
|
env_key: str,
|
|
default: Optional[str] = None
|
|
) -> str:
|
|
"""Get a value from a dictionary or an environment variable."""
|
|
if key in data and data[key]:
|
|
return data[key]
|
|
else:
|
|
return get_from_env(key, env_key, default=default)
|
|
|
|
|
|
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
|
|
"""Get a value from a dictionary or an environment variable."""
|
|
if env_key in os.environ and os.environ[env_key]:
|
|
return os.environ[env_key]
|
|
elif default is not None:
|
|
return default
|
|
else:
|
|
raise ValueError(
|
|
f"Did not find {key}, please add an environment variable"
|
|
f" `{env_key}` which contains it, or pass"
|
|
f" `{key}` as a named parameter."
|
|
)
|
|
|
|
|
|
|
|
|
|
class OpenAIChat:
|
|
"""OpenAI Chat large language models.
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
environment variable ``OPENAI_API_KEY`` set with your API key.
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.llms import OpenAIChat
|
|
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
model_name: str = "gpt-3.5-turbo"
|
|
"""Model name to use."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
openai_api_key: Optional[str] = None
|
|
openai_api_base: Optional[str] = None
|
|
# to support explicit proxy for OpenAI
|
|
openai_proxy: Optional[str] = None
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
prefix_messages: List = Field(default_factory=list)
|
|
"""Series of messages for Chat input."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
|
"""Set of special tokens that are allowed。"""
|
|
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
|
"""Set of special tokens that are not allowed。"""
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
openai_api_key = get_from_dict_or_env(
|
|
values, "openai_api_key", "OPENAI_API_KEY"
|
|
)
|
|
openai_api_base = get_from_dict_or_env(
|
|
values,
|
|
"openai_api_base",
|
|
"OPENAI_API_BASE",
|
|
default="",
|
|
)
|
|
openai_proxy = get_from_dict_or_env(
|
|
values,
|
|
"openai_proxy",
|
|
"OPENAI_PROXY",
|
|
default="",
|
|
)
|
|
openai_organization = get_from_dict_or_env(
|
|
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
|
|
)
|
|
try:
|
|
import openai
|
|
|
|
openai.api_key = openai_api_key
|
|
if openai_api_base:
|
|
openai.api_base = openai_api_base
|
|
if openai_organization:
|
|
openai.organization = openai_organization
|
|
if openai_proxy:
|
|
openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import openai python package. "
|
|
"Please install it with `pip install openai`."
|
|
)
|
|
try:
|
|
values["client"] = openai.ChatCompletion
|
|
except AttributeError:
|
|
raise ValueError(
|
|
"`openai` has no `ChatCompletion` attribute, this is likely "
|
|
"due to an old version of the openai package. Try upgrading it "
|
|
"with `pip install --upgrade openai`."
|
|
)
|
|
warnings.warn(
|
|
"You are trying to use a chat model. This way of initializing it is "
|
|
"no longer supported. Instead, please use: "
|
|
"`from langchain.chat_models import ChatOpenAI`"
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
return self.model_kwargs
|
|
|
|
def _get_chat_params(
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
|
) -> Tuple:
|
|
if len(prompts) > 1:
|
|
raise ValueError(
|
|
f"OpenAIChat currently only supports single prompt, got {prompts}"
|
|
)
|
|
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
|
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
if params.get("max_tokens") == -1:
|
|
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
|
|
del params["max_tokens"]
|
|
return messages, params
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
messages, params = self._get_chat_params([prompt], stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
for stream_resp in completion_with_retry(
|
|
self, messages=messages, run_manager=run_manager, **params
|
|
):
|
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
|
chunk = GenerationChunk(text=token)
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(token, chunk=chunk)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
messages, params = self._get_chat_params([prompt], stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
async for stream_resp in await acompletion_with_retry(
|
|
self, messages=messages, run_manager=run_manager, **params
|
|
):
|
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
|
chunk = GenerationChunk(text=token)
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(token, chunk=chunk)
|
|
|
|
def _generate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
if self.streaming:
|
|
generation: Optional[GenerationChunk] = None
|
|
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
|
if generation is None:
|
|
generation = chunk
|
|
else:
|
|
generation += chunk
|
|
assert generation is not None
|
|
return LLMResult(generations=[[generation]])
|
|
|
|
messages, params = self._get_chat_params(prompts, stop)
|
|
params = {**params, **kwargs}
|
|
full_response = completion_with_retry(
|
|
self, messages=messages, run_manager=run_manager, **params
|
|
)
|
|
llm_output = {
|
|
"token_usage": full_response["usage"],
|
|
"model_name": self.model_name,
|
|
}
|
|
return LLMResult(
|
|
generations=[
|
|
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
|
],
|
|
llm_output=llm_output,
|
|
)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
if self.streaming:
|
|
generation: Optional[GenerationChunk] = None
|
|
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
|
if generation is None:
|
|
generation = chunk
|
|
else:
|
|
generation += chunk
|
|
assert generation is not None
|
|
return LLMResult(generations=[[generation]])
|
|
|
|
messages, params = self._get_chat_params(prompts, stop)
|
|
params = {**params, **kwargs}
|
|
full_response = await acompletion_with_retry(
|
|
self, messages=messages, run_manager=run_manager, **params
|
|
)
|
|
llm_output = {
|
|
"token_usage": full_response["usage"],
|
|
"model_name": self.model_name,
|
|
}
|
|
return LLMResult(
|
|
generations=[
|
|
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
|
],
|
|
llm_output=llm_output,
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "openai-chat"
|
|
|
|
def get_token_ids(self, text: str) -> List[int]:
|
|
"""Get the token IDs using the tiktoken package."""
|
|
# tiktoken NOT supported for Python < 3.8
|
|
if sys.version_info[1] < 8:
|
|
return super().get_token_ids(text)
|
|
try:
|
|
import tiktoken
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import tiktoken python package. "
|
|
"This is needed in order to calculate get_num_tokens. "
|
|
"Please install it with `pip install tiktoken`."
|
|
)
|
|
|
|
enc = tiktoken.encoding_for_model(self.model_name)
|
|
return enc.encode(
|
|
text,
|
|
allowed_special=self.allowed_special,
|
|
disallowed_special=self.disallowed_special,
|
|
) |