You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/scripts/auto_tests_docs/auto_tests.py

123 lines
3.4 KiB

import inspect
import os
import re
import threading
from swarms import OpenAIChat
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
from zeta.nn.modules._activations import (
AccurateGELUActivation,
ClippedGELUActivation,
FastGELUActivation,
GELUActivation,
LaplaceActivation,
LinearActivation,
MishActivation,
NewGELUActivation,
PytorchGELUTanh,
QuickGELUActivation,
ReLUSquaredActivation,
)
from zeta.nn.modules.dense_connect import DenseBlock
from zeta.nn.modules.dual_path_block import DualPathBlock
from zeta.nn.modules.feedback_block import FeedbackBlock
from zeta.nn.modules.highway_layer import HighwayLayer
from zeta.nn.modules.multi_scale_block import MultiScaleBlock
from zeta.nn.modules.recursive_block import RecursiveBlock
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def extract_code_from_markdown(markdown_content: str):
"""
Extracts code blocks from a Markdown string and returns them as a single string.
Args:
- markdown_content (str): The Markdown content as a string.
Returns:
- str: A single string containing all the code blocks separated by newlines.
"""
# Regular expression for fenced code blocks
pattern = r"```(?:\w+\n)?(.*?)```"
matches = re.findall(pattern, markdown_content, re.DOTALL)
# Concatenate all code blocks separated by newlines
return "\n".join(code.strip() for code in matches)
def create_test(cls):
"""
Process the documentation for a given class using OpenAI model and save it in a Python file.
"""
doc = inspect.getdoc(cls)
source = inspect.getsource(cls)
input_content = (
f"Class Name: {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
print(input_content)
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
processed_content = model(
TEST_WRITER_SOP_PROMPT(input_content, "zeta", "zeta.nn")
)
processed_content = extract_code_from_markdown(processed_content)
doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = "tests/nn/modules"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Python file
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.py")
with open(file_path, "w") as file:
file.write(doc_content)
def main():
classes = [
DenseBlock,
HighwayLayer,
MultiScaleBlock,
FeedbackBlock,
DualPathBlock,
RecursiveBlock,
PytorchGELUTanh,
NewGELUActivation,
GELUActivation,
FastGELUActivation,
QuickGELUActivation,
ClippedGELUActivation,
AccurateGELUActivation,
MishActivation,
LinearActivation,
LaplaceActivation,
ReLUSquaredActivation,
]
threads = []
for cls in classes:
thread = threading.Thread(target=create_test, args=(cls,))
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print("Tests generated in 'docs/zeta/nn/modules' directory.")
if __name__ == "__main__":
main()