You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
927 lines
34 KiB
927 lines
34 KiB
import concurrent.futures
|
|
import json
|
|
import os
|
|
import traceback
|
|
from typing import Any, Callable, Dict, List, Literal, Optional, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from swarms.prompts.multi_agent_collab_prompt import (
|
|
MULTI_AGENT_COLLAB_PROMPT_TWO,
|
|
)
|
|
from swarms.structs.agent import Agent
|
|
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
|
|
from swarms.structs.csv_to_agent import AgentLoader
|
|
from swarms.structs.groupchat import GroupChat
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
from swarms.structs.majority_voting import MajorityVoting
|
|
from swarms.structs.mixture_of_agents import MixtureOfAgents
|
|
from swarms.structs.multi_agent_router import MultiAgentRouter
|
|
from swarms.structs.rearrange import AgentRearrange
|
|
from swarms.structs.sequential_workflow import SequentialWorkflow
|
|
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm
|
|
from swarms.structs.swarm_matcher import swarm_matcher
|
|
from swarms.telemetry.log_executions import log_execution
|
|
from swarms.utils.output_types import OutputType
|
|
from swarms.utils.loguru_logger import initialize_logger
|
|
from swarms.structs.malt import MALT
|
|
from swarms.structs.deep_research_swarm import DeepResearchSwarm
|
|
from swarms.structs.council_judge import CouncilAsAJudge
|
|
from swarms.structs.interactive_groupchat import InteractiveGroupChat
|
|
from swarms.structs.heavy_swarm import HeavySwarm
|
|
from swarms.structs.ma_utils import list_all_agents
|
|
from swarms.utils.generate_keys import generate_api_key
|
|
|
|
logger = initialize_logger(log_folder="swarm_router")
|
|
|
|
SwarmType = Literal[
|
|
"AgentRearrange",
|
|
"MixtureOfAgents",
|
|
"SpreadSheetSwarm",
|
|
"SequentialWorkflow",
|
|
"ConcurrentWorkflow",
|
|
"GroupChat",
|
|
"MultiAgentRouter",
|
|
"AutoSwarmBuilder",
|
|
"HiearchicalSwarm",
|
|
"auto",
|
|
"MajorityVoting",
|
|
"MALT",
|
|
"DeepResearchSwarm",
|
|
"CouncilAsAJudge",
|
|
"InteractiveGroupChat",
|
|
"HeavySwarm",
|
|
]
|
|
|
|
|
|
class Document(BaseModel):
|
|
file_path: str
|
|
data: str
|
|
|
|
|
|
class SwarmRouterConfig(BaseModel):
|
|
"""Configuration model for SwarmRouter."""
|
|
|
|
name: str = Field(
|
|
description="Name identifier for the SwarmRouter instance",
|
|
)
|
|
description: str = Field(
|
|
description="Description of the SwarmRouter's purpose",
|
|
)
|
|
# max_loops: int = Field(
|
|
# description="Maximum number of execution loops"
|
|
# )
|
|
swarm_type: SwarmType = Field(
|
|
description="Type of swarm to use",
|
|
)
|
|
rearrange_flow: Optional[str] = Field(
|
|
description="Flow configuration string"
|
|
)
|
|
rules: Optional[str] = Field(
|
|
description="Rules to inject into every agent"
|
|
)
|
|
multi_agent_collab_prompt: bool = Field(
|
|
description="Whether to enable multi-agent collaboration prompts",
|
|
)
|
|
task: str = Field(
|
|
description="The task to be executed by the swarm",
|
|
)
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class SwarmRouterRunError(Exception):
|
|
"""Exception raised when an error occurs during task execution."""
|
|
|
|
pass
|
|
|
|
|
|
class SwarmRouterConfigError(Exception):
|
|
"""Exception raised when an error occurs during task execution."""
|
|
|
|
pass
|
|
|
|
|
|
class SwarmRouter:
|
|
"""
|
|
A class that dynamically routes tasks to different swarm types based on user selection or automatic matching.
|
|
|
|
The SwarmRouter enables flexible task execution by either using a specified swarm type or automatically determining
|
|
the most suitable swarm type for a given task. It handles task execution while managing logging, type validation,
|
|
and metadata capture.
|
|
|
|
Args:
|
|
name (str, optional): Name identifier for the SwarmRouter instance. Defaults to "swarm-router".
|
|
description (str, optional): Description of the SwarmRouter's purpose. Defaults to "Routes your task to the desired swarm".
|
|
max_loops (int, optional): Maximum number of execution loops. Defaults to 1.
|
|
agents (List[Union[Agent, Callable]], optional): List of Agent objects or callables to use. Defaults to empty list.
|
|
swarm_type (SwarmType, optional): Type of swarm to use. Defaults to "SequentialWorkflow".
|
|
autosave (bool, optional): Whether to enable autosaving. Defaults to False.
|
|
flow (str, optional): Flow configuration string. Defaults to None.
|
|
return_json (bool, optional): Whether to return results as JSON. Defaults to False.
|
|
auto_generate_prompts (bool, optional): Whether to auto-generate agent prompts. Defaults to False.
|
|
shared_memory_system (Any, optional): Shared memory system for agents. Defaults to None.
|
|
rules (str, optional): Rules to inject into every agent. Defaults to None.
|
|
documents (List[str], optional): List of document file paths to use. Defaults to empty list.
|
|
output_type (str, optional): Output format type. Defaults to "string". Supported: 'str', 'string', 'list', 'json', 'dict', 'yaml', 'xml'.
|
|
|
|
Attributes:
|
|
name (str): Name identifier for the SwarmRouter instance
|
|
description (str): Description of the SwarmRouter's purpose
|
|
max_loops (int): Maximum number of execution loops
|
|
agents (List[Union[Agent, Callable]]): List of Agent objects or callables
|
|
swarm_type (SwarmType): Type of swarm being used
|
|
autosave (bool): Whether autosaving is enabled
|
|
flow (str): Flow configuration string
|
|
return_json (bool): Whether results are returned as JSON
|
|
auto_generate_prompts (bool): Whether prompt auto-generation is enabled
|
|
shared_memory_system (Any): Shared memory system for agents
|
|
rules (str): Rules injected into every agent
|
|
documents (List[str]): List of document file paths
|
|
output_type (str): Output format type. Supported: 'str', 'string', 'list', 'json', 'dict', 'yaml', 'xml'.
|
|
logs (List[SwarmLog]): List of execution logs
|
|
swarm: The instantiated swarm object
|
|
|
|
Available Swarm Types:
|
|
- AgentRearrange: Optimizes agent arrangement for task execution
|
|
- MixtureOfAgents: Combines multiple agent types for diverse tasks
|
|
- SpreadSheetSwarm: Uses spreadsheet-like operations for task management
|
|
- SequentialWorkflow: Executes tasks sequentially
|
|
- ConcurrentWorkflow: Executes tasks in parallel
|
|
- "auto": Automatically selects best swarm type via embedding search
|
|
|
|
Methods:
|
|
run(task: str, device: str = "cpu", all_cores: bool = False, all_gpus: bool = False, *args, **kwargs) -> Any:
|
|
Executes a task using the configured swarm
|
|
|
|
batch_run(tasks: List[str], *args, **kwargs) -> List[Any]:
|
|
Executes multiple tasks in sequence
|
|
|
|
threaded_run(task: str, *args, **kwargs) -> Any:
|
|
Executes a task in a separate thread
|
|
|
|
async_run(task: str, *args, **kwargs) -> Any:
|
|
Executes a task asynchronously
|
|
|
|
concurrent_run(task: str, *args, **kwargs) -> Any:
|
|
Executes a task using concurrent execution
|
|
|
|
concurrent_batch_run(tasks: List[str], *args, **kwargs) -> List[Any]:
|
|
Executes multiple tasks concurrently
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
id: str = generate_api_key(prefix="swarm-router"),
|
|
name: str = "swarm-router",
|
|
description: str = "Routes your task to the desired swarm",
|
|
max_loops: int = 1,
|
|
agents: List[Union[Agent, Callable]] = [],
|
|
swarm_type: SwarmType = "SequentialWorkflow", # "SpreadSheetSwarm" # "auto"
|
|
autosave: bool = False,
|
|
rearrange_flow: str = None,
|
|
return_json: bool = False,
|
|
auto_generate_prompts: bool = False,
|
|
shared_memory_system: Any = None,
|
|
rules: str = None,
|
|
documents: List[str] = [], # A list of docs file paths
|
|
output_type: OutputType = "dict-all-except-first",
|
|
speaker_fn: callable = None,
|
|
load_agents_from_csv: bool = False,
|
|
csv_file_path: str = None,
|
|
return_entire_history: bool = True,
|
|
multi_agent_collab_prompt: bool = True,
|
|
list_all_agents: bool = False,
|
|
conversation: Any = None,
|
|
agents_config: Optional[Dict[Any, Any]] = None,
|
|
speaker_function: str = None,
|
|
heavy_swarm_loops_per_agent: int = 1,
|
|
heavy_swarm_question_agent_model_name: str = "gpt-4.1",
|
|
heavy_swarm_worker_model_name: str = "claude-3-5-sonnet-20240620",
|
|
telemetry_enabled: bool = False,
|
|
council_judge_model_name: str = "gpt-4o-mini", # Add missing model_name attribute
|
|
verbose: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.id = id
|
|
self.name = name
|
|
self.description = description
|
|
self.max_loops = max_loops
|
|
self.agents = agents
|
|
self.swarm_type = swarm_type
|
|
self.autosave = autosave
|
|
self.rearrange_flow = rearrange_flow
|
|
self.return_json = return_json
|
|
self.auto_generate_prompts = auto_generate_prompts
|
|
self.shared_memory_system = shared_memory_system
|
|
self.rules = rules
|
|
self.documents = documents
|
|
self.output_type = output_type
|
|
self.speaker_fn = speaker_fn
|
|
self.logs = []
|
|
self.load_agents_from_csv = load_agents_from_csv
|
|
self.csv_file_path = csv_file_path
|
|
self.return_entire_history = return_entire_history
|
|
self.multi_agent_collab_prompt = multi_agent_collab_prompt
|
|
self.list_all_agents = list_all_agents
|
|
self.conversation = conversation
|
|
self.agents_config = agents_config
|
|
self.speaker_function = speaker_function
|
|
self.heavy_swarm_loops_per_agent = heavy_swarm_loops_per_agent
|
|
self.heavy_swarm_question_agent_model_name = (
|
|
heavy_swarm_question_agent_model_name
|
|
)
|
|
self.heavy_swarm_worker_model_name = (
|
|
heavy_swarm_worker_model_name
|
|
)
|
|
self.telemetry_enabled = telemetry_enabled
|
|
self.council_judge_model_name = council_judge_model_name # Add missing model_name attribute
|
|
self.verbose = verbose
|
|
|
|
# Initialize swarm factory for O(1) lookup performance
|
|
self._swarm_factory = self._initialize_swarm_factory()
|
|
self._swarm_cache = {} # Cache for created swarms
|
|
|
|
# Reliability check
|
|
self.reliability_check()
|
|
|
|
def reliability_check(self):
|
|
"""Perform reliability checks on swarm configuration.
|
|
|
|
Validates essential swarm parameters and configuration before execution.
|
|
Handles special case for CouncilAsAJudge which may not require agents.
|
|
"""
|
|
try:
|
|
|
|
if self.verbose:
|
|
logger.info(
|
|
f"[SwarmRouter Reliability Check] Initializing SwarmRouter '{self.name}'. "
|
|
"Validating required parameters for robust operation.\n"
|
|
"For detailed documentation on SwarmRouter configuration, usage, and available swarm types, "
|
|
"please visit: https://docs.swarms.world/en/latest/swarms/structs/swarm_router/"
|
|
)
|
|
|
|
# Check swarm type first since it affects other validations
|
|
if self.swarm_type is None:
|
|
raise SwarmRouterConfigError(
|
|
"SwarmRouter: Swarm type cannot be 'none'. Check the docs for all the swarm types available. https://docs.swarms.world/en/latest/swarms/structs/swarm_router/"
|
|
)
|
|
|
|
if self.agents is None:
|
|
raise SwarmRouterConfigError(
|
|
"SwarmRouter: No agents provided for the swarm. Check the docs to learn of required parameters. https://docs.swarms.world/en/latest/swarms/structs/agent/"
|
|
)
|
|
|
|
if (
|
|
self.swarm_type == "AgentRearrange"
|
|
and self.rearrange_flow is None
|
|
):
|
|
raise SwarmRouterConfigError(
|
|
"SwarmRouter: rearrange_flow cannot be 'none' when using AgentRearrange. Check the SwarmRouter docs to learn of required parameters. https://docs.swarms.world/en/latest/swarms/structs/agent_rearrange/"
|
|
)
|
|
|
|
# Validate max_loops
|
|
if self.max_loops == 0:
|
|
raise SwarmRouterConfigError(
|
|
"SwarmRouter: max_loops cannot be 0. Check the docs for all the max_loops available. https://docs.swarms.world/en/latest/swarms/structs/swarm_router/"
|
|
)
|
|
|
|
self.setup()
|
|
|
|
# Load agents from CSV
|
|
if self.load_agents_from_csv:
|
|
self.agents = AgentLoader(
|
|
csv_path=self.csv_file_path
|
|
).load_agents()
|
|
|
|
if self.telemetry_enabled:
|
|
self.agent_config = self.agent_config()
|
|
|
|
except SwarmRouterConfigError as e:
|
|
logger.error(
|
|
f"SwarmRouterConfigError: {str(e)} Full Traceback: {traceback.format_exc()}"
|
|
)
|
|
raise e
|
|
|
|
def setup(self):
|
|
if self.auto_generate_prompts is True:
|
|
self.activate_ape()
|
|
|
|
# Handle shared memory
|
|
if self.shared_memory_system is not None:
|
|
self.activate_shared_memory()
|
|
|
|
# Handle rules
|
|
if self.rules is not None:
|
|
self.handle_rules()
|
|
|
|
if self.multi_agent_collab_prompt is True:
|
|
self.update_system_prompt_for_agent_in_swarm()
|
|
|
|
if self.list_all_agents is True:
|
|
self.list_agents_to_eachother()
|
|
|
|
def fetch_message_history_as_string(self):
|
|
try:
|
|
return (
|
|
self.swarm.conversation.return_all_except_first_string()
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error fetching message history as string: {str(e)}"
|
|
)
|
|
return None
|
|
|
|
def activate_shared_memory(self):
|
|
logger.info("Activating shared memory with all agents ")
|
|
|
|
for agent in self.agents:
|
|
agent.long_term_memory = self.shared_memory_system
|
|
|
|
logger.info("All agents now have the same memory system")
|
|
|
|
def handle_rules(self):
|
|
logger.info("Injecting rules to every agent!")
|
|
|
|
for agent in self.agents:
|
|
agent.system_prompt += f"### Swarm Rules ### {self.rules}"
|
|
|
|
logger.info("Finished injecting rules")
|
|
|
|
def activate_ape(self):
|
|
"""Activate automatic prompt engineering for agents that support it"""
|
|
try:
|
|
logger.info("Activating automatic prompt engineering...")
|
|
activated_count = 0
|
|
for agent in self.agents:
|
|
if hasattr(agent, "auto_generate_prompt"):
|
|
agent.auto_generate_prompt = (
|
|
self.auto_generate_prompts
|
|
)
|
|
activated_count += 1
|
|
logger.debug(
|
|
f"Activated APE for agent: {agent.name if hasattr(agent, 'name') else 'unnamed'}"
|
|
)
|
|
|
|
logger.info(
|
|
f"Successfully activated APE for {activated_count} agents"
|
|
)
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error activating automatic prompt engineering: {str(e)}"
|
|
logger.error(
|
|
f"Error activating automatic prompt engineering in SwarmRouter: {str(e)}"
|
|
)
|
|
raise RuntimeError(error_msg) from e
|
|
|
|
def _initialize_swarm_factory(self) -> Dict[str, Callable]:
|
|
"""
|
|
Initialize the swarm factory with O(1) lookup performance.
|
|
|
|
Returns:
|
|
Dict[str, Callable]: Dictionary mapping swarm types to their factory functions.
|
|
"""
|
|
return {
|
|
"HeavySwarm": self._create_heavy_swarm,
|
|
"AgentRearrange": self._create_agent_rearrange,
|
|
"MALT": self._create_malt,
|
|
"CouncilAsAJudge": self._create_council_as_judge,
|
|
"InteractiveGroupChat": self._create_interactive_group_chat,
|
|
"DeepResearchSwarm": self._create_deep_research_swarm,
|
|
"HiearchicalSwarm": self._create_hierarchical_swarm,
|
|
"MixtureOfAgents": self._create_mixture_of_agents,
|
|
"MajorityVoting": self._create_majority_voting,
|
|
"GroupChat": self._create_group_chat,
|
|
"MultiAgentRouter": self._create_multi_agent_router,
|
|
"SpreadSheetSwarm": self._create_spreadsheet_swarm,
|
|
"SequentialWorkflow": self._create_sequential_workflow,
|
|
"ConcurrentWorkflow": self._create_concurrent_workflow,
|
|
}
|
|
|
|
def _create_heavy_swarm(self, *args, **kwargs):
|
|
"""Factory function for HeavySwarm."""
|
|
return HeavySwarm(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
output_type=self.output_type,
|
|
loops_per_agent=self.heavy_swarm_loops_per_agent,
|
|
question_agent_model_name=self.heavy_swarm_question_agent_model_name,
|
|
worker_model_name=self.heavy_swarm_worker_model_name,
|
|
)
|
|
|
|
def _create_agent_rearrange(self, *args, **kwargs):
|
|
"""Factory function for AgentRearrange."""
|
|
return AgentRearrange(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
flow=self.rearrange_flow,
|
|
return_json=self.return_json,
|
|
output_type=self.output_type,
|
|
return_entire_history=self.return_entire_history,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_malt(self, *args, **kwargs):
|
|
"""Factory function for MALT."""
|
|
return MALT(
|
|
name=self.name,
|
|
description=self.description,
|
|
max_loops=self.max_loops,
|
|
return_dict=True,
|
|
preset_agents=True,
|
|
)
|
|
|
|
def _create_council_as_judge(self, *args, **kwargs):
|
|
"""Factory function for CouncilAsAJudge."""
|
|
return CouncilAsAJudge(
|
|
name=self.name,
|
|
description=self.description,
|
|
model_name=self.council_judge_model_name,
|
|
output_type=self.output_type,
|
|
)
|
|
|
|
def _create_interactive_group_chat(self, *args, **kwargs):
|
|
"""Factory function for InteractiveGroupChat."""
|
|
return InteractiveGroupChat(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
output_type=self.output_type,
|
|
speaker_function=self.speaker_function,
|
|
)
|
|
|
|
def _create_deep_research_swarm(self, *args, **kwargs):
|
|
"""Factory function for DeepResearchSwarm."""
|
|
return DeepResearchSwarm(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
output_type=self.output_type,
|
|
)
|
|
|
|
def _create_hierarchical_swarm(self, *args, **kwargs):
|
|
"""Factory function for HierarchicalSwarm."""
|
|
return HierarchicalSwarm(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
return_all_history=self.return_entire_history,
|
|
output_type=self.output_type,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_mixture_of_agents(self, *args, **kwargs):
|
|
"""Factory function for MixtureOfAgents."""
|
|
return MixtureOfAgents(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
aggregator_agent=self.agents[-1],
|
|
layers=self.max_loops,
|
|
output_type=self.output_type,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_majority_voting(self, *args, **kwargs):
|
|
"""Factory function for MajorityVoting."""
|
|
return MajorityVoting(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
consensus_agent=self.agents[-1],
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_group_chat(self, *args, **kwargs):
|
|
"""Factory function for GroupChat."""
|
|
return GroupChat(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
speaker_fn=self.speaker_fn,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_multi_agent_router(self, *args, **kwargs):
|
|
"""Factory function for MultiAgentRouter."""
|
|
return MultiAgentRouter(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
shared_memory_system=self.shared_memory_system,
|
|
output_type=self.output_type,
|
|
)
|
|
|
|
def _create_spreadsheet_swarm(self, *args, **kwargs):
|
|
"""Factory function for SpreadSheetSwarm."""
|
|
return SpreadSheetSwarm(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
autosave_on=self.autosave,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_sequential_workflow(self, *args, **kwargs):
|
|
"""Factory function for SequentialWorkflow."""
|
|
return SequentialWorkflow(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
shared_memory_system=self.shared_memory_system,
|
|
output_type=self.output_type,
|
|
return_json=self.return_json,
|
|
return_entire_history=self.return_entire_history,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_concurrent_workflow(self, *args, **kwargs):
|
|
"""Factory function for ConcurrentWorkflow."""
|
|
return ConcurrentWorkflow(
|
|
name=self.name,
|
|
description=self.description,
|
|
agents=self.agents,
|
|
max_loops=self.max_loops,
|
|
auto_save=self.autosave,
|
|
return_str_on=self.return_entire_history,
|
|
output_type=self.output_type,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def _create_swarm(self, task: str = None, *args, **kwargs):
|
|
"""
|
|
Dynamically create and return the specified swarm type with O(1) lookup performance.
|
|
Uses factory pattern with caching for optimal performance.
|
|
|
|
Args:
|
|
task (str, optional): The task to be executed by the swarm. Defaults to None.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Union[AgentRearrange, MixtureOfAgents, SpreadSheetSwarm, SequentialWorkflow, ConcurrentWorkflow]:
|
|
The instantiated swarm object.
|
|
|
|
Raises:
|
|
ValueError: If an invalid swarm type is provided.
|
|
"""
|
|
# Handle auto swarm type selection
|
|
if self.swarm_type == "auto":
|
|
try:
|
|
matched_swarm_type = str(swarm_matcher(task))
|
|
self.swarm_type = matched_swarm_type
|
|
logger.info(
|
|
f"Auto-selected swarm type: {matched_swarm_type}"
|
|
)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Auto-selection failed: {e}, falling back to SequentialWorkflow"
|
|
)
|
|
self.swarm_type = "SequentialWorkflow"
|
|
|
|
# Check cache first for better performance
|
|
cache_key = (
|
|
f"{self.swarm_type}_{hash(str(args) + str(kwargs))}"
|
|
)
|
|
if cache_key in self._swarm_cache:
|
|
logger.debug(f"Using cached swarm: {self.swarm_type}")
|
|
return self._swarm_cache[cache_key]
|
|
|
|
# Use factory pattern for O(1) lookup
|
|
factory_func = self._swarm_factory.get(self.swarm_type)
|
|
if factory_func is None:
|
|
valid_types = list(self._swarm_factory.keys())
|
|
raise ValueError(
|
|
f"Invalid swarm type: {self.swarm_type}. "
|
|
f"Valid types are: {', '.join(valid_types)}"
|
|
)
|
|
|
|
# Create the swarm using the factory function
|
|
try:
|
|
swarm = factory_func(*args, **kwargs)
|
|
|
|
# Cache the created swarm for future use
|
|
self._swarm_cache[cache_key] = swarm
|
|
|
|
logger.info(
|
|
f"Successfully created swarm: {self.swarm_type}"
|
|
)
|
|
return swarm
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to create swarm {self.swarm_type}: {str(e)}"
|
|
)
|
|
raise RuntimeError(
|
|
f"Failed to create swarm {self.swarm_type}: {str(e)}"
|
|
) from e
|
|
|
|
def update_system_prompt_for_agent_in_swarm(self):
|
|
# Use list comprehension for faster iteration
|
|
for agent in self.agents:
|
|
if agent.system_prompt is None:
|
|
agent.system_prompt = ""
|
|
agent.system_prompt += MULTI_AGENT_COLLAB_PROMPT_TWO
|
|
|
|
def agent_config(self):
|
|
agent_config = {}
|
|
for agent in self.agents:
|
|
agent_config[agent.agent_name] = agent.to_dict()
|
|
|
|
return agent_config
|
|
|
|
def list_agents_to_eachother(self):
|
|
if self.swarm_type == "SequentialWorkflow":
|
|
self.conversation = (
|
|
self.swarm.agent_rearrange.conversation
|
|
)
|
|
else:
|
|
self.conversation = self.swarm.conversation
|
|
|
|
if self.list_all_agents is True:
|
|
list_all_agents(
|
|
agents=self.agents,
|
|
conversation=self.swarm.conversation,
|
|
name=self.name,
|
|
description=self.description,
|
|
add_collaboration_prompt=True,
|
|
add_to_conversation=True,
|
|
)
|
|
|
|
def _run(
|
|
self,
|
|
task: str,
|
|
img: Optional[str] = None,
|
|
model_response: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Dynamically run the specified task on the selected or matched swarm type.
|
|
|
|
Args:
|
|
task (str): The task to be executed by the swarm.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the swarm's execution.
|
|
|
|
Raises:
|
|
Exception: If an error occurs during task execution.
|
|
"""
|
|
self.swarm = self._create_swarm(task, *args, **kwargs)
|
|
|
|
log_execution(
|
|
swarm_id=self.id,
|
|
status="start",
|
|
swarm_config=self.to_dict(),
|
|
swarm_architecture="swarm_router",
|
|
enabled_on=self.telemetry_enabled,
|
|
)
|
|
|
|
try:
|
|
result = self.swarm.run(task=task, *args, **kwargs)
|
|
|
|
log_execution(
|
|
swarm_id=self.id,
|
|
status="completion",
|
|
swarm_config=self.to_dict(),
|
|
swarm_architecture="swarm_router",
|
|
enabled_on=self.telemetry_enabled,
|
|
)
|
|
|
|
return result
|
|
except SwarmRouterRunError as e:
|
|
logger.error(
|
|
f"\n[SwarmRouter ERROR] '{self.name}' failed to execute the task on the selected swarm.\n"
|
|
f"Reason: {str(e)}\n"
|
|
f"Traceback:\n{traceback.format_exc()}\n\n"
|
|
"Troubleshooting steps:\n"
|
|
" - Double-check your SwarmRouter configuration (swarm_type, agents, parameters).\n"
|
|
" - Ensure all individual agents are properly configured and initialized.\n"
|
|
" - Review the error message and traceback above for clues.\n\n"
|
|
"For detailed documentation on SwarmRouter configuration, usage, and available swarm types, please visit:\n"
|
|
" https://docs.swarms.world/en/latest/swarms/structs/swarm_router/\n"
|
|
)
|
|
raise e
|
|
|
|
def run(
|
|
self,
|
|
task: str,
|
|
img: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
model_response: Optional[str] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Execute a task on the selected swarm type with specified compute resources.
|
|
|
|
Args:
|
|
task (str): The task to be executed by the swarm.
|
|
device (str, optional): Device to run on - "cpu" or "gpu". Defaults to "cpu".
|
|
all_cores (bool, optional): Whether to use all CPU cores. Defaults to True.
|
|
all_gpus (bool, optional): Whether to use all available GPUs. Defaults to False.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the swarm's execution.
|
|
|
|
Raises:
|
|
Exception: If an error occurs during task execution.
|
|
"""
|
|
try:
|
|
return self._run(
|
|
task=task,
|
|
img=img,
|
|
imgs=imgs,
|
|
model_response=model_response,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
except SwarmRouterRunError as e:
|
|
logger.error(
|
|
f"\n[SwarmRouter ERROR] '{self.name}' failed to execute the task on the selected swarm.\n"
|
|
f"Reason: {str(e)}\n"
|
|
f"Traceback:\n{traceback.format_exc()}\n\n"
|
|
"Troubleshooting steps:\n"
|
|
" - Double-check your SwarmRouter configuration (swarm_type, agents, parameters).\n"
|
|
" - Ensure all individual agents are properly configured and initialized.\n"
|
|
" - Review the error message and traceback above for clues.\n\n"
|
|
"For detailed documentation on SwarmRouter configuration, usage, and available swarm types, please visit:\n"
|
|
" https://docs.swarms.world/en/latest/swarms/structs/swarm_router/\n"
|
|
)
|
|
raise e
|
|
|
|
def __call__(
|
|
self,
|
|
task: str,
|
|
img: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Make the SwarmRouter instance callable.
|
|
|
|
Args:
|
|
task (str): The task to be executed by the swarm.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the swarm's execution.
|
|
"""
|
|
return self.run(
|
|
task=task, img=img, imgs=imgs, *args, **kwargs
|
|
)
|
|
|
|
def batch_run(
|
|
self,
|
|
tasks: List[str],
|
|
img: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> List[Any]:
|
|
"""
|
|
Execute a batch of tasks on the selected or matched swarm type.
|
|
|
|
Args:
|
|
tasks (List[str]): A list of tasks to be executed by the swarm.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
List[Any]: A list of results from the swarm's execution.
|
|
|
|
Raises:
|
|
Exception: If an error occurs during task execution.
|
|
"""
|
|
results = []
|
|
for task in tasks:
|
|
try:
|
|
result = self.run(
|
|
task, img=img, imgs=imgs, *args, **kwargs
|
|
)
|
|
results.append(result)
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"SwarmRouter: Error executing batch task on swarm: {str(e)} Traceback: {traceback.format_exc()}"
|
|
)
|
|
return results
|
|
|
|
def concurrent_run(
|
|
self,
|
|
task: str,
|
|
img: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Execute a task on the selected or matched swarm type concurrently.
|
|
|
|
Args:
|
|
task (str): The task to be executed by the swarm.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the swarm's execution.
|
|
|
|
Raises:
|
|
Exception: If an error occurs during task execution.
|
|
"""
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(
|
|
max_workers=os.cpu_count()
|
|
) as executor:
|
|
future = executor.submit(
|
|
self.run, task, img=img, imgs=imgs, *args, **kwargs
|
|
)
|
|
result = future.result()
|
|
return result
|
|
|
|
def _serialize_callable(
|
|
self, attr_value: Callable
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Serializes callable attributes by extracting their name and docstring.
|
|
|
|
Args:
|
|
attr_value (Callable): The callable to serialize.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Dictionary with name and docstring of the callable.
|
|
"""
|
|
return {
|
|
"name": getattr(
|
|
attr_value, "__name__", type(attr_value).__name__
|
|
),
|
|
"doc": getattr(attr_value, "__doc__", None),
|
|
}
|
|
|
|
def _serialize_attr(self, attr_name: str, attr_value: Any) -> Any:
|
|
"""
|
|
Serializes an individual attribute, handling non-serializable objects.
|
|
|
|
Args:
|
|
attr_name (str): The name of the attribute.
|
|
attr_value (Any): The value of the attribute.
|
|
|
|
Returns:
|
|
Any: The serialized value of the attribute.
|
|
"""
|
|
try:
|
|
if callable(attr_value):
|
|
return self._serialize_callable(attr_value)
|
|
elif hasattr(attr_value, "to_dict"):
|
|
return (
|
|
attr_value.to_dict()
|
|
) # Recursive serialization for nested objects
|
|
else:
|
|
json.dumps(
|
|
attr_value
|
|
) # Attempt to serialize to catch non-serializable objects
|
|
return attr_value
|
|
except (TypeError, ValueError):
|
|
return f"<Non-serializable: {type(attr_value).__name__}>"
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Converts all attributes of the class, including callables, into a dictionary.
|
|
Handles non-serializable attributes by converting them or skipping them.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary representation of the class attributes.
|
|
"""
|
|
return {
|
|
attr_name: self._serialize_attr(attr_name, attr_value)
|
|
for attr_name, attr_value in self.__dict__.items()
|
|
}
|