You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.1 KiB
76 lines
2.1 KiB
import faiss
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.docstore import InMemoryDocstore
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.vectorstores import FAISS
|
|
from langchain_experimental.autonomous_agents import AutoGPT
|
|
|
|
from swarms.agents.tools.autogpt import (
|
|
DuckDuckGoSearchRun,
|
|
FileChatMessageHistory,
|
|
ReadFileTool,
|
|
WebpageQATool,
|
|
WriteFileTool,
|
|
load_qa_with_sources_chain,
|
|
process_csv,
|
|
# web_search,
|
|
query_website_tool
|
|
)
|
|
|
|
|
|
ROOT_DIR = "./data/"
|
|
|
|
|
|
class AutoBot:
|
|
def __init__(self,
|
|
model_name="gpt-4",
|
|
openai_api_key=None,
|
|
ai_name="Autobot Swarm Worker",
|
|
ai_role="Worker in a swarm",
|
|
# embedding_size=None,
|
|
# k=None,
|
|
temperature=0.5):
|
|
self.openai_api_key = openai_api_key
|
|
self.temperature = temperature
|
|
self.llm = ChatOpenAI(model_name=model_name,
|
|
openai_api_key=self.openai_api_key,
|
|
temperature=self.temperature)
|
|
|
|
self.ai_name = ai_name
|
|
self.ai_role = ai_role
|
|
|
|
# self.embedding_size = embedding_size
|
|
# # self.k = k
|
|
|
|
self.setup_tools()
|
|
self.setup_memory()
|
|
self.setup_agent()
|
|
|
|
def setup_tools(self):
|
|
self.tools = [
|
|
WriteFileTool(root_dir=ROOT_DIR),
|
|
ReadFileTool(root_dir=ROOT_DIR),
|
|
process_csv,
|
|
query_website_tool,
|
|
]
|
|
|
|
def setup_memory(self):
|
|
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
|
embedding_size = 1536
|
|
index = faiss.IndexFlatL2(embedding_size)
|
|
self.vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
|
|
|
|
def setup_agent(self):
|
|
self.agent = AutoGPT.from_llm_and_tools(
|
|
ai_name=self.ai_name,
|
|
ai_role=self.ai_role,
|
|
tools=self.tools,
|
|
llm=self.llm,
|
|
memory=self.vectorstore.as_retriever(search_kwargs={"k": 8}),
|
|
)
|
|
|
|
def run(self, task):
|
|
result = self.agent.run([task])
|
|
return result
|
|
|