You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/swarm_matcher.py

607 lines
23 KiB

from typing import List, Tuple, Optional
import numpy as np
from swarms.utils.lazy_loader import lazy_import_decorator
from pydantic import BaseModel, Field
import json
from tenacity import retry, stop_after_attempt, wait_exponential
from swarms.utils.loguru_logger import initialize_logger
from swarms.utils.auto_download_check_packages import (
auto_check_and_download_package,
)
logger = initialize_logger(log_folder="swarm_matcher")
class SwarmType(BaseModel):
name: str
description: str
embedding: Optional[List[float]] = Field(
default=None, exclude=True
)
class SwarmMatcherConfig(BaseModel):
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
embedding_dim: int = (
512 # Dimension of the sentence-transformers model
)
@lazy_import_decorator
class SwarmMatcher:
"""
A class for matching tasks to swarm types based on their descriptions.
It utilizes a transformer model to generate embeddings for task and swarm type descriptions,
and then calculates the dot product to find the best match.
"""
def __init__(self, config: SwarmMatcherConfig):
"""
Initializes the SwarmMatcher with a configuration.
Args:
config (SwarmMatcherConfig): The configuration for the SwarmMatcher.
"""
logger.add("swarm_matcher_debug.log", level="DEBUG")
logger.debug("Initializing SwarmMatcher")
try:
import torch
except ImportError:
auto_check_and_download_package(
"torch", package_manager="pip", upgrade=True
)
import torch
try:
import transformers
except ImportError:
auto_check_and_download_package(
"transformers", package_manager="pip", upgrade=True
)
import transformers
self.torch = torch
try:
self.config = config
self.tokenizer = (
transformers.AutoTokenizer.from_pretrained(
config.model_name
)
)
self.model = transformers.AutoModel.from_pretrained(
config.model_name
)
self.swarm_types: List[SwarmType] = []
logger.debug("SwarmMatcher initialized successfully")
except Exception as e:
logger.error(f"Error initializing SwarmMatcher: {str(e)}")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
)
def get_embedding(self, text: str) -> np.ndarray:
"""
Generates an embedding for a given text using the configured model.
Args:
text (str): The text for which to generate an embedding.
Returns:
np.ndarray: The embedding vector for the text.
"""
logger.debug(f"Getting embedding for text: {text[:50]}...")
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
)
with self.torch.no_grad():
outputs = self.model(**inputs)
embedding = (
outputs.last_hidden_state.mean(dim=1)
.squeeze()
.numpy()
)
logger.debug("Embedding generated successfully")
return embedding
except Exception as e:
logger.error(f"Error generating embedding: {str(e)}")
raise
def add_swarm_type(self, swarm_type: SwarmType):
"""
Adds a swarm type to the list of swarm types, generating an embedding for its description.
Args:
swarm_type (SwarmType): The swarm type to add.
"""
logger.debug(f"Adding swarm type: {swarm_type.name}")
try:
embedding = self.get_embedding(swarm_type.description)
swarm_type.embedding = embedding.tolist()
self.swarm_types.append(swarm_type)
logger.info(f"Added swarm type: {swarm_type.name}")
except Exception as e:
logger.error(
f"Error adding swarm type {swarm_type.name}: {str(e)}"
)
raise
def find_best_match(self, task: str) -> Tuple[str, float]:
"""
Finds the best match for a given task among the registered swarm types.
Args:
task (str): The task for which to find the best match.
Returns:
Tuple[str, float]: A tuple containing the name of the best matching swarm type and the score.
"""
logger.debug(f"Finding best match for task: {task[:50]}...")
try:
task_embedding = self.get_embedding(task)
best_match = None
best_score = -float("inf")
for swarm_type in self.swarm_types:
score = np.dot(
task_embedding, np.array(swarm_type.embedding)
)
if score > best_score:
best_score = score
best_match = swarm_type
logger.info(
f"Best match for task: {best_match.name} (score: {best_score})"
)
return best_match.name, float(best_score)
except Exception as e:
logger.error(
f"Error finding best match for task: {str(e)}"
)
raise
def auto_select_swarm(self, task: str) -> str:
"""
Automatically selects the best swarm type for a given task based on their descriptions.
Args:
task (str): The task for which to select a swarm type.
Returns:
str: The name of the selected swarm type.
"""
logger.debug(f"Auto-selecting swarm for task: {task[:50]}...")
best_match, score = self.find_best_match(task)
logger.info(f"Task: {task}")
logger.info(f"Selected Swarm Type: {best_match}")
logger.info(f"Confidence Score: {score:.2f}")
return best_match
def run_multiple(self, tasks: List[str], *args, **kwargs) -> str:
swarms = []
for task in tasks:
output = self.auto_select_swarm(task)
# Append
swarms.append(output)
return swarms
def save_swarm_types(self, filename: str):
"""
Saves the registered swarm types to a JSON file.
Args:
filename (str): The name of the file to which to save the swarm types.
"""
try:
with open(filename, "w") as f:
json.dump([st.dict() for st in self.swarm_types], f)
logger.info(f"Saved swarm types to {filename}")
except Exception as e:
logger.error(f"Error saving swarm types: {str(e)}")
raise
def load_swarm_types(self, filename: str):
"""
Loads swarm types from a JSON file.
Args:
filename (str): The name of the file from which to load the swarm types.
"""
try:
with open(filename, "r") as f:
swarm_types_data = json.load(f)
self.swarm_types = [
SwarmType(**st) for st in swarm_types_data
]
logger.info(f"Loaded swarm types from {filename}")
except Exception as e:
logger.error(f"Error loading swarm types: {str(e)}")
raise
def initialize_swarm_types(matcher: SwarmMatcher):
logger.debug("Initializing swarm types")
swarm_types = [
SwarmType(
name="AgentRearrange",
description="Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation and minimizing bottlenecks. Keywords: orchestration, coordination, pipeline optimization, task scheduling, resource allocation, workflow management, agent organization, process optimization",
),
SwarmType(
name="MixtureOfAgents",
description="Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach to problem-solving and leveraging individual strengths. Keywords: multi-agent system, expert collaboration, distributed intelligence, collective problem solving, agent specialization, team coordination, hybrid approaches, knowledge synthesis",
),
SwarmType(
name="SpreadSheetSwarm",
description="Collaborative data processing and analysis in a spreadsheet-like environment, facilitating real-time data sharing and visualization. Keywords: data analysis, tabular processing, collaborative editing, data transformation, spreadsheet operations, data visualization, real-time collaboration, structured data",
),
SwarmType(
name="SequentialWorkflow",
description="Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical approach to task execution. Keywords: linear processing, waterfall methodology, step-by-step execution, ordered tasks, sequential operations, process flow, systematic approach, staged execution",
),
SwarmType(
name="ConcurrentWorkflow",
description="Process multiple tasks or data sources concurrently in parallel, maximizing productivity and reducing processing time. Keywords: parallel processing, multi-threading, asynchronous execution, distributed computing, concurrent operations, simultaneous tasks, parallel workflows, scalable processing",
),
# SwarmType(
# name="HierarchicalSwarm",
# description="Organize agents in a hierarchical structure with clear reporting lines and delegation of responsibilities. Keywords: management hierarchy, organizational structure, delegation, supervision, chain of command, tiered organization, structured coordination",
# ),
# SwarmType(
# name="AdaptiveSwarm",
# description="Dynamically adjust agent behavior and swarm configuration based on task requirements and performance feedback. Keywords: dynamic adaptation, self-optimization, feedback loops, learning systems, flexible configuration, responsive behavior, adaptive algorithms",
# ),
# SwarmType(
# name="ConsensusSwarm",
# description="Achieve group decisions through consensus mechanisms and voting protocols among multiple agents. Keywords: group decision making, voting systems, collective intelligence, agreement protocols, democratic processes, collaborative decisions",
# ),
]
for swarm_type in swarm_types:
matcher.add_swarm_type(swarm_type)
logger.debug("Swarm types initialized")
@lazy_import_decorator
def swarm_matcher(task: str, *args, **kwargs):
"""
Runs the SwarmMatcher example with predefined tasks and swarm types.
"""
config = SwarmMatcherConfig()
matcher = SwarmMatcher(config)
initialize_swarm_types(matcher)
# matcher.save_swarm_types(f"swarm_logs/{uuid4().hex}.json")
swarm_type = matcher.auto_select_swarm(task)
logger.info(f"{swarm_type}")
return swarm_type
# from typing import List, Tuple, Dict
# from pydantic import BaseModel, Field
# from loguru import logger
# from uuid import uuid4
# import chromadb
# import json
# from tenacity import retry, stop_after_attempt, wait_exponential
# class SwarmType(BaseModel):
# """A swarm type with its name, description and optional metadata"""
# id: str = Field(default_factory=lambda: str(uuid4()))
# name: str
# description: str
# metadata: Dict = Field(default_factory=dict)
# class SwarmMatcherConfig(BaseModel):
# """Configuration for the SwarmMatcher"""
# collection_name: str = "swarm_types"
# distance_metric: str = "cosine" # or "l2" or "ip"
# embedding_function: str = (
# "sentence-transformers/all-mpnet-base-v2" # Better model than MiniLM
# )
# persist_directory: str = "./chroma_db"
# class SwarmMatcher:
# """
# An improved swarm matcher that uses ChromaDB for better vector similarity search.
# Features:
# - Persistent storage of embeddings
# - Better vector similarity search with multiple distance metrics
# - Improved embedding model
# - Metadata filtering capabilities
# - Batch operations support
# """
# def __init__(self, config: SwarmMatcherConfig):
# """Initialize the improved swarm matcher"""
# logger.add("swarm_matcher.log", rotation="100 MB")
# self.config = config
# # Initialize ChromaDB client with persistence
# self.chroma_client = chromadb.Client()
# # Get or create collection
# try:
# self.collection = self.chroma_client.get_collection(
# name=config.collection_name,
# )
# except ValueError:
# self.collection = self.chroma_client.create_collection(
# name=config.collection_name,
# metadata={"hnsw:space": config.distance_metric},
# )
# logger.info(
# f"Initialized SwarmMatcher with collection '{config.collection_name}'"
# )
# def add_swarm_type(self, swarm_type: SwarmType) -> None:
# """Add a single swarm type to the collection"""
# try:
# self.collection.add(
# ids=[swarm_type.id],
# documents=[swarm_type.description],
# metadatas=[
# {"name": swarm_type.name, **swarm_type.metadata}
# ],
# )
# logger.info(f"Added swarm type: {swarm_type.name}")
# except Exception as e:
# logger.error(
# f"Error adding swarm type {swarm_type.name}: {str(e)}"
# )
# raise
# def add_swarm_types(self, swarm_types: List[SwarmType]) -> None:
# """Add multiple swarm types in batch"""
# try:
# self.collection.add(
# ids=[st.id for st in swarm_types],
# documents=[st.description for st in swarm_types],
# metadatas=[
# {"name": st.name, **st.metadata}
# for st in swarm_types
# ],
# )
# logger.info(f"Added {len(swarm_types)} swarm types")
# except Exception as e:
# logger.error(
# f"Error adding swarm types in batch: {str(e)}"
# )
# raise
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# )
# def find_best_matches(
# self,
# task: str,
# n_results: int = 3,
# score_threshold: float = 0.7,
# ) -> List[Tuple[str, float]]:
# """
# Find the best matching swarm types for a given task
# Returns multiple matches with their scores
# """
# try:
# results = self.collection.query(
# query_texts=[task],
# n_results=n_results,
# include=["metadatas", "distances"],
# )
# matches = []
# for metadata, distance in zip(
# results["metadatas"][0], results["distances"][0]
# ):
# # Convert distance to similarity score (1 - normalized_distance)
# score = 1 - (
# distance / 2
# ) # Normalize cosine distance to [0,1]
# if score >= score_threshold:
# matches.append((metadata["name"], score))
# logger.info(f"Found {len(matches)} matches for task")
# return matches
# except Exception as e:
# logger.error(f"Error finding matches for task: {str(e)}")
# raise
# def auto_select_swarm(self, task: str) -> str:
# """
# Automatically select the best swarm type for a task
# Returns only the top match
# """
# matches = self.find_best_matches(task, n_results=1)
# if not matches:
# logger.warning("No suitable matches found for task")
# return "SequentialWorkflow" # Default fallback
# best_match, score = matches[0]
# logger.info(
# f"Selected swarm type '{best_match}' with confidence {score:.3f}"
# )
# return best_match
# def run_multiple(self, tasks: List[str]) -> List[str]:
# """Process multiple tasks in batch"""
# return [self.auto_select_swarm(task) for task in tasks]
# def save_swarm_types(self, filename: str) -> None:
# """Export swarm types to JSON"""
# try:
# all_data = self.collection.get(
# include=["metadatas", "documents"]
# )
# swarm_types = [
# SwarmType(
# id=id_,
# name=metadata["name"],
# description=document,
# metadata={
# k: v
# for k, v in metadata.items()
# if k != "name"
# },
# )
# for id_, metadata, document in zip(
# all_data["ids"],
# all_data["metadatas"],
# all_data["documents"],
# )
# ]
# with open(filename, "w") as f:
# json.dump(
# [st.dict() for st in swarm_types], f, indent=2
# )
# logger.info(f"Saved swarm types to {filename}")
# except Exception as e:
# logger.error(f"Error saving swarm types: {str(e)}")
# raise
# def load_swarm_types(self, filename: str) -> None:
# """Import swarm types from JSON"""
# try:
# with open(filename, "r") as f:
# swarm_types_data = json.load(f)
# swarm_types = [SwarmType(**st) for st in swarm_types_data]
# self.add_swarm_types(swarm_types)
# logger.info(f"Loaded swarm types from {filename}")
# except Exception as e:
# logger.error(f"Error loading swarm types: {str(e)}")
# raise
# def initialize_default_swarm_types(matcher: SwarmMatcher) -> None:
# """Initialize the matcher with default swarm types"""
# swarm_types = [
# SwarmType(
# name="AgentRearrange",
# description="""
# Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation
# and minimizing bottlenecks. Specialized in orchestration, coordination, pipeline optimization,
# task scheduling, resource allocation, workflow management, agent organization, and process optimization.
# Best for tasks requiring complex agent interactions and workflow optimization.
# """,
# metadata={
# "category": "optimization",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="MixtureOfAgents",
# description="""
# Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach
# to problem-solving and leveraging individual strengths. Focuses on multi-agent systems,
# expert collaboration, distributed intelligence, collective problem solving, agent specialization,
# team coordination, hybrid approaches, and knowledge synthesis. Ideal for complex problems
# requiring multiple areas of expertise.
# """,
# metadata={
# "category": "collaboration",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="SpreadSheetSwarm",
# description="""
# Collaborative data processing and analysis in a spreadsheet-like environment, facilitating
# real-time data sharing and visualization. Specializes in data analysis, tabular processing,
# collaborative editing, data transformation, spreadsheet operations, data visualization,
# real-time collaboration, and structured data handling. Perfect for data-intensive tasks
# requiring structured analysis.
# """,
# metadata={
# "category": "data_processing",
# "complexity": "medium",
# },
# ),
# SwarmType(
# name="SequentialWorkflow",
# description="""
# Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical
# approach to task execution. Focuses on linear processing, waterfall methodology, step-by-step
# execution, ordered tasks, sequential operations, process flow, systematic approach, and staged
# execution. Best for tasks requiring strict order and dependencies.
# """,
# metadata={"category": "workflow", "complexity": "low"},
# ),
# SwarmType(
# name="ConcurrentWorkflow",
# description="""
# Process multiple tasks or data sources concurrently in parallel, maximizing productivity
# and reducing processing time. Specializes in parallel processing, multi-threading,
# asynchronous execution, distributed computing, concurrent operations, simultaneous tasks,
# parallel workflows, and scalable processing. Ideal for independent tasks that can be
# processed simultaneously.
# """,
# metadata={"category": "workflow", "complexity": "medium"},
# ),
# ]
# matcher.add_swarm_types(swarm_types)
# logger.info("Initialized default swarm types")
# def create_swarm_matcher(
# persist_dir: str = "./chroma_db",
# collection_name: str = "swarm_types",
# ) -> SwarmMatcher:
# """Convenience function to create and initialize a swarm matcher"""
# config = SwarmMatcherConfig(
# persist_directory=persist_dir, collection_name=collection_name
# )
# matcher = SwarmMatcher(config)
# initialize_default_swarm_types(matcher)
# return matcher
# # Example usage
# def swarm_matcher(task: str) -> str:
# # Create and initialize matcher
# matcher = create_swarm_matcher()
# swarm_type = matcher.auto_select_swarm(task)
# print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")
# return swarm_type
# # # Example usage
# # if __name__ == "__main__":
# # # Create and initialize matcher
# # matcher = create_swarm_matcher()
# # # Example tasks
# # tasks = [
# # "Analyze this spreadsheet of sales data and create visualizations",
# # "Coordinate multiple AI agents to solve a complex problem",
# # "Process these tasks one after another in a specific order",
# # "Write multiple blog posts about the latest advancements in swarm intelligence all at once",
# # "Write a blog post about the latest advancements in swarm intelligence",
# # ]
# # # Process tasks
# # for task in tasks:
# # swarm_type = matcher.auto_select_swarm(task)
# # print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")