You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
15 KiB
479 lines
15 KiB
import base64
|
|
import requests
|
|
|
|
import asyncio
|
|
from typing import List
|
|
|
|
from loguru import logger
|
|
import litellm
|
|
|
|
try:
|
|
from litellm import completion, acompletion
|
|
except ImportError:
|
|
import subprocess
|
|
import sys
|
|
import litellm
|
|
|
|
print("Installing litellm")
|
|
|
|
subprocess.check_call(
|
|
[sys.executable, "-m", "pip", "install", "-U", "litellm"]
|
|
)
|
|
print("litellm installed")
|
|
|
|
from litellm import completion
|
|
|
|
litellm.set_verbose = True
|
|
litellm.ssl_verify = False
|
|
|
|
|
|
class LiteLLMException(Exception):
|
|
"""
|
|
Exception for LiteLLM.
|
|
"""
|
|
|
|
|
|
def get_audio_base64(audio_source: str) -> str:
|
|
"""
|
|
Convert audio from a given source to a base64 encoded string.
|
|
|
|
This function handles both URLs and local file paths. If the audio source is a URL, it fetches the audio data
|
|
from the internet. If it is a local file path, it reads the audio data from the specified file.
|
|
|
|
Args:
|
|
audio_source (str): The source of the audio, which can be a URL or a local file path.
|
|
|
|
Returns:
|
|
str: A base64 encoded string representation of the audio data.
|
|
|
|
Raises:
|
|
requests.HTTPError: If the HTTP request to fetch audio data fails.
|
|
FileNotFoundError: If the local audio file does not exist.
|
|
"""
|
|
# Handle URL
|
|
if audio_source.startswith(("http://", "https://")):
|
|
response = requests.get(audio_source)
|
|
response.raise_for_status()
|
|
audio_data = response.content
|
|
# Handle local file
|
|
else:
|
|
with open(audio_source, "rb") as file:
|
|
audio_data = file.read()
|
|
|
|
encoded_string = base64.b64encode(audio_data).decode("utf-8")
|
|
return encoded_string
|
|
|
|
|
|
class LiteLLM:
|
|
"""
|
|
This class represents a LiteLLM.
|
|
It is used to interact with the LLM model for various tasks.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: str = "gpt-4o",
|
|
system_prompt: str = None,
|
|
stream: bool = False,
|
|
temperature: float = 0.5,
|
|
max_tokens: int = 4000,
|
|
ssl_verify: bool = False,
|
|
max_completion_tokens: int = 4000,
|
|
tools_list_dictionary: List[dict] = None,
|
|
tool_choice: str = "auto",
|
|
parallel_tool_calls: bool = False,
|
|
audio: str = None,
|
|
retries: int = 3,
|
|
verbose: bool = False,
|
|
caching: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Initialize the LiteLLM with the given parameters.
|
|
|
|
Args:
|
|
model_name (str, optional): The name of the model to use. Defaults to "gpt-4o".
|
|
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
|
stream (bool, optional): Whether to stream the output. Defaults to False.
|
|
temperature (float, optional): The temperature for the model. Defaults to 0.5.
|
|
max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 4000.
|
|
"""
|
|
self.model_name = model_name
|
|
self.system_prompt = system_prompt
|
|
self.stream = stream
|
|
self.temperature = temperature
|
|
self.max_tokens = max_tokens
|
|
self.ssl_verify = ssl_verify
|
|
self.max_completion_tokens = max_completion_tokens
|
|
self.tools_list_dictionary = tools_list_dictionary
|
|
self.tool_choice = tool_choice
|
|
self.parallel_tool_calls = parallel_tool_calls
|
|
self.caching = caching
|
|
self.modalities = []
|
|
self._cached_messages = {} # Cache for prepared messages
|
|
self.messages = [] # Initialize messages list
|
|
|
|
# Configure litellm settings
|
|
litellm.set_verbose = (
|
|
verbose # Disable verbose mode for better performance
|
|
)
|
|
litellm.ssl_verify = ssl_verify
|
|
litellm.num_retries = (
|
|
retries # Add retries for better reliability
|
|
)
|
|
|
|
def output_for_tools(self, response: any):
|
|
return response["choices"][0]["message"]["tool_calls"][0]
|
|
|
|
def _prepare_messages(self, task: str) -> list:
|
|
"""
|
|
Prepare the messages for the given task.
|
|
|
|
Args:
|
|
task (str): The task to prepare messages for.
|
|
|
|
Returns:
|
|
list: A list of messages prepared for the task.
|
|
"""
|
|
# Check cache first
|
|
cache_key = f"{self.system_prompt}:{task}"
|
|
if cache_key in self._cached_messages:
|
|
return self._cached_messages[cache_key].copy()
|
|
|
|
messages = []
|
|
if self.system_prompt:
|
|
messages.append(
|
|
{"role": "system", "content": self.system_prompt}
|
|
)
|
|
messages.append({"role": "user", "content": task})
|
|
|
|
# Cache the prepared messages
|
|
self._cached_messages[cache_key] = messages.copy()
|
|
return messages
|
|
|
|
def audio_processing(self, task: str, audio: str):
|
|
"""
|
|
Process the audio for the given task.
|
|
|
|
Args:
|
|
task (str): The task to be processed.
|
|
audio (str): The path or identifier for the audio file.
|
|
"""
|
|
self.modalities.append("audio")
|
|
|
|
encoded_string = get_audio_base64(audio)
|
|
|
|
# Append messages
|
|
self.messages.append(
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": task},
|
|
{
|
|
"type": "input_audio",
|
|
"input_audio": {
|
|
"data": encoded_string,
|
|
"format": "wav",
|
|
},
|
|
},
|
|
],
|
|
}
|
|
)
|
|
|
|
def vision_processing(self, task: str, image: str):
|
|
"""
|
|
Process the image for the given task.
|
|
"""
|
|
self.modalities.append("vision")
|
|
|
|
# Append messages
|
|
self.messages.append(
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": task},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image,
|
|
# "detail": "high"
|
|
# "format": "image",
|
|
},
|
|
},
|
|
],
|
|
}
|
|
)
|
|
|
|
def handle_modalities(
|
|
self, task: str, audio: str = None, img: str = None
|
|
):
|
|
"""
|
|
Handle the modalities for the given task.
|
|
"""
|
|
self.messages = [] # Reset messages
|
|
self.modalities.append("text")
|
|
|
|
if audio is not None:
|
|
self.audio_processing(task=task, audio=audio)
|
|
self.modalities.append("audio")
|
|
|
|
if img is not None:
|
|
self.vision_processing(task=task, image=img)
|
|
self.modalities.append("vision")
|
|
|
|
def run(
|
|
self,
|
|
task: str,
|
|
audio: str = None,
|
|
img: str = None,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Run the LLM model for the given task.
|
|
|
|
Args:
|
|
task (str): The task to run the model for.
|
|
audio (str, optional): Audio input if any. Defaults to None.
|
|
img (str, optional): Image input if any. Defaults to None.
|
|
*args: Additional positional arguments.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The content of the response from the model.
|
|
|
|
Raises:
|
|
Exception: If there is an error in processing the request.
|
|
"""
|
|
try:
|
|
messages = self._prepare_messages(task)
|
|
|
|
if audio is not None or img is not None:
|
|
self.handle_modalities(
|
|
task=task, audio=audio, img=img
|
|
)
|
|
messages = (
|
|
self.messages
|
|
) # Use modality-processed messages
|
|
|
|
if (
|
|
self.model_name == "openai/o4-mini"
|
|
or self.model_name == "openai/o3-2025-04-16"
|
|
):
|
|
# Prepare common completion parameters
|
|
completion_params = {
|
|
"model": self.model_name,
|
|
"messages": messages,
|
|
"stream": self.stream,
|
|
# "temperature": self.temperature,
|
|
"max_completion_tokens": self.max_tokens,
|
|
"caching": self.caching,
|
|
**kwargs,
|
|
}
|
|
|
|
else:
|
|
# Prepare common completion parameters
|
|
completion_params = {
|
|
"model": self.model_name,
|
|
"messages": messages,
|
|
"stream": self.stream,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"caching": self.caching,
|
|
**kwargs,
|
|
}
|
|
|
|
# Handle tool-based completion
|
|
if self.tools_list_dictionary is not None:
|
|
completion_params.update(
|
|
{
|
|
"tools": self.tools_list_dictionary,
|
|
"tool_choice": self.tool_choice,
|
|
"parallel_tool_calls": self.parallel_tool_calls,
|
|
}
|
|
)
|
|
response = completion(**completion_params)
|
|
return (
|
|
response.choices[0]
|
|
.message.tool_calls[0]
|
|
.function.arguments
|
|
)
|
|
|
|
# Handle modality-based completion
|
|
if (
|
|
self.modalities and len(self.modalities) > 1
|
|
): # More than just text
|
|
completion_params.update(
|
|
{"modalities": self.modalities}
|
|
)
|
|
response = completion(**completion_params)
|
|
return response.choices[0].message.content
|
|
|
|
# Standard completion
|
|
if self.stream:
|
|
output = completion(**completion_params)
|
|
else:
|
|
response = completion(**completion_params)
|
|
|
|
if self.tools_list_dictionary is not None:
|
|
return self.output_for_tools(response)
|
|
else:
|
|
return response.choices[0].message.content
|
|
|
|
return output
|
|
|
|
except LiteLLMException as error:
|
|
logger.error(f"Error in LiteLLM run: {str(error)}")
|
|
if "rate_limit" in str(error).lower():
|
|
logger.warning(
|
|
"Rate limit hit, retrying with exponential backoff..."
|
|
)
|
|
import time
|
|
|
|
time.sleep(2) # Add a small delay before retry
|
|
return self.run(task, audio, img, *args, **kwargs)
|
|
raise error
|
|
|
|
def __call__(self, task: str, *args, **kwargs):
|
|
"""
|
|
Call the LLM model for the given task.
|
|
|
|
Args:
|
|
task (str): The task to run the model for.
|
|
*args: Additional positional arguments to pass to the model.
|
|
**kwargs: Additional keyword arguments to pass to the model.
|
|
|
|
Returns:
|
|
str: The content of the response from the model.
|
|
"""
|
|
return self.run(task, *args, **kwargs)
|
|
|
|
async def arun(self, task: str, *args, **kwargs):
|
|
"""
|
|
Run the LLM model asynchronously for the given task.
|
|
|
|
Args:
|
|
task (str): The task to run the model for.
|
|
*args: Additional positional arguments.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The content of the response from the model.
|
|
"""
|
|
try:
|
|
messages = self._prepare_messages(task)
|
|
|
|
# Prepare common completion parameters
|
|
completion_params = {
|
|
"model": self.model_name,
|
|
"messages": messages,
|
|
"stream": self.stream,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
**kwargs,
|
|
}
|
|
|
|
# Handle tool-based completion
|
|
if self.tools_list_dictionary is not None:
|
|
completion_params.update(
|
|
{
|
|
"tools": self.tools_list_dictionary,
|
|
"tool_choice": self.tool_choice,
|
|
"parallel_tool_calls": self.parallel_tool_calls,
|
|
}
|
|
)
|
|
response = await acompletion(**completion_params)
|
|
return (
|
|
response.choices[0]
|
|
.message.tool_calls[0]
|
|
.function.arguments
|
|
)
|
|
|
|
# Standard completion
|
|
response = await acompletion(**completion_params)
|
|
|
|
print(response)
|
|
return response
|
|
|
|
except Exception as error:
|
|
logger.error(f"Error in LiteLLM arun: {str(error)}")
|
|
# if "rate_limit" in str(error).lower():
|
|
# logger.warning(
|
|
# "Rate limit hit, retrying with exponential backoff..."
|
|
# )
|
|
# await asyncio.sleep(2) # Use async sleep
|
|
# return await self.arun(task, *args, **kwargs)
|
|
raise error
|
|
|
|
async def _process_batch(
|
|
self, tasks: List[str], batch_size: int = 10
|
|
):
|
|
"""
|
|
Process a batch of tasks asynchronously.
|
|
|
|
Args:
|
|
tasks (List[str]): List of tasks to process.
|
|
batch_size (int): Size of each batch.
|
|
|
|
Returns:
|
|
List[str]: List of responses.
|
|
"""
|
|
results = []
|
|
for i in range(0, len(tasks), batch_size):
|
|
batch = tasks[i : i + batch_size]
|
|
batch_results = await asyncio.gather(
|
|
*[self.arun(task) for task in batch],
|
|
return_exceptions=True,
|
|
)
|
|
|
|
# Handle any exceptions in the batch
|
|
for result in batch_results:
|
|
if isinstance(result, Exception):
|
|
logger.error(
|
|
f"Error in batch processing: {str(result)}"
|
|
)
|
|
results.append(str(result))
|
|
else:
|
|
results.append(result)
|
|
|
|
# Add a small delay between batches to avoid rate limits
|
|
if i + batch_size < len(tasks):
|
|
await asyncio.sleep(0.5)
|
|
|
|
return results
|
|
|
|
def batched_run(self, tasks: List[str], batch_size: int = 10):
|
|
"""
|
|
Run multiple tasks in batches synchronously.
|
|
|
|
Args:
|
|
tasks (List[str]): List of tasks to process.
|
|
batch_size (int): Size of each batch.
|
|
|
|
Returns:
|
|
List[str]: List of responses.
|
|
"""
|
|
logger.info(
|
|
f"Running {len(tasks)} tasks in batches of {batch_size}"
|
|
)
|
|
return asyncio.run(self._process_batch(tasks, batch_size))
|
|
|
|
async def batched_arun(
|
|
self, tasks: List[str], batch_size: int = 10
|
|
):
|
|
"""
|
|
Run multiple tasks in batches asynchronously.
|
|
|
|
Args:
|
|
tasks (List[str]): List of tasks to process.
|
|
batch_size (int): Size of each batch.
|
|
|
|
Returns:
|
|
List[str]: List of responses.
|
|
"""
|
|
logger.info(
|
|
f"Running {len(tasks)} tasks asynchronously in batches of {batch_size}"
|
|
)
|
|
return await self._process_batch(tasks, batch_size)
|