You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/tools/tool_parse_exec.py

123 lines
4.0 KiB

import json
from typing import List, Any, Callable
from swarms.utils.loguru_logger import logger
from swarms.utils.parse_code import extract_code_from_markdown
def parse_and_execute_json(
functions: List[Callable[..., Any]],
json_string: str,
parse_md: bool = False,
verbose: bool = False,
return_str: bool = True,
) -> dict:
"""
Parses and executes a JSON string containing function names and parameters.
Args:
functions (List[callable]): A list of callable functions.
json_string (str): The JSON string to parse and execute.
parse_md (bool): Flag indicating whether to extract code from Markdown.
verbose (bool): Flag indicating whether to enable verbose logging.
return_str (bool): Flag indicating whether to return a JSON string.
Returns:
dict: A dictionary containing the results of executing the functions with the parsed parameters.
"""
if not functions or not json_string:
raise ValueError("Functions and JSON string are required")
if parse_md:
json_string = extract_code_from_markdown(json_string)
try:
# Create function name to function mapping
function_dict = {func.__name__: func for func in functions}
if verbose:
logger.info(
f"Available functions: {list(function_dict.keys())}"
)
logger.info(f"Processing JSON: {json_string}")
# Parse JSON data
data = json.loads(json_string)
# Handle both single function and function list formats
function_list = []
if "functions" in data:
function_list = data["functions"]
elif "function" in data:
function_list = [data["function"]]
else:
function_list = [
data
] # Assume entire object is single function
# Ensure function_list is a list and filter None values
if isinstance(function_list, dict):
function_list = [function_list]
function_list = [f for f in function_list if f]
if verbose:
logger.info(f"Processing {len(function_list)} functions")
results = {}
for function_data in function_list:
function_name = function_data.get("name")
parameters = function_data.get("parameters", {})
if not function_name:
logger.warning("Function data missing name field")
continue
if verbose:
logger.info(
f"Executing {function_name} with params: {parameters}"
)
if function_name not in function_dict:
logger.warning(f"Function {function_name} not found")
results[function_name] = None
continue
try:
result = function_dict[function_name](**parameters)
results[function_name] = str(result)
if verbose:
logger.info(
f"Result for {function_name}: {result}"
)
except Exception as e:
logger.error(
f"Error executing {function_name}: {str(e)}"
)
results[function_name] = f"Error: {str(e)}"
# Format final results
if len(results) == 1:
# Return single result directly
data = {"result": next(iter(results.values()))}
else:
# Return all results
data = {
"results": results,
"summary": "\n".join(
f"{k}: {v}" for k, v in results.items()
),
}
if return_str:
return json.dumps(data)
else:
return data
except json.JSONDecodeError as e:
error = f"Invalid JSON format: {str(e)}"
logger.error(error)
return {"error": error}
except Exception as e:
error = f"Error parsing and executing JSON: {str(e)}"
logger.error(error)
return {"error": error}