You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/sequential_workflow.py

425 lines
16 KiB

"""
TODO:
- Add a method to update the arguments of a task
- Add a method to get the results of each task
- Add a method to get the results of a specific task
- Add a method to get the results of the workflow
- Add a method to get the results of the workflow as a dataframe
- Add a method to run the workflow in parallel with a pool of workers and a queue and a dashboard
- Add a dashboard to visualize the workflow
- Add async support
- Add context manager support
- Add workflow history
"""
import json
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, List, Optional, Union
from termcolor import colored
from swarms.structs.flow import Flow
# Define a generic Task that can handle different types of callable objects
@dataclass
class Task:
"""
Task class for running a task in a sequential workflow.
Examples:
>>> from swarms.structs import Task, Flow
>>> from swarms.models import OpenAIChat
>>> flow = Flow(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in miami", flow=flow)
>>> task.execute()
>>> task.result
"""
description: str
flow: Union[Callable, Flow]
args: List[Any] = field(default_factory=list)
kwargs: Dict[str, Any] = field(default_factory=dict)
result: Any = None
history: List[Any] = field(default_factory=list)
def execute(self):
"""
Execute the task.
Raises:
ValueError: If a Flow instance is used as a task and the 'task' argument is not provided.
"""
if isinstance(self.flow, Flow):
# Add a prompt to notify the Flow of the sequential workflow
if "prompt" in self.kwargs:
self.kwargs["prompt"] += (
f"\n\nPrevious output: {self.result}" if self.result else ""
)
else:
self.kwargs["prompt"] = f"Main task: {self.description}" + (
f"\n\nPrevious output: {self.result}" if self.result else ""
)
self.result = self.flow.run(*self.args, **self.kwargs)
else:
self.result = self.flow(*self.args, **self.kwargs)
self.history.append(self.result)
# SequentialWorkflow class definition using dataclasses
@dataclass
class SequentialWorkflow:
"""
SequentialWorkflow class for running a sequence of tasks using N number of autonomous agents.
Args:
max_loops (int): The maximum number of times to run the workflow.
dashboard (bool): Whether to display the dashboard for the workflow.
Attributes:
tasks (List[Task]): The list of tasks to execute.
max_loops (int): The maximum number of times to run the workflow.
dashboard (bool): Whether to display the dashboard for the workflow.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.run()
>>> workflow.tasks
"""
tasks: List[Task] = field(default_factory=list)
max_loops: int = 1
autosave: bool = False
saved_state_filepath: Optional[str] = "sequential_workflow_state.json"
restore_state_filepath: Optional[str] = None
dashboard: bool = False
def add(self, task: str, flow: Union[Callable, Flow], *args, **kwargs) -> None:
"""
Add a task to the workflow.
Args:
task (str): The task description or the initial input for the Flow.
flow (Union[Callable, Flow]): The model or flow to execute the task.
*args: Additional arguments to pass to the task execution.
**kwargs: Additional keyword arguments to pass to the task execution.
"""
# If the flow is a Flow instance, we include the task in kwargs for Flow.run()
if isinstance(flow, Flow):
kwargs["task"] = task # Set the task as a keyword argument for Flow
# Append the task to the tasks list
self.tasks.append(
Task(description=task, flow=flow, args=list(args), kwargs=kwargs)
)
def reset_workflow(self) -> None:
"""Resets the workflow by clearing the results of each task."""
for task in self.tasks:
task.result = None
def get_task_results(self) -> Dict[str, Any]:
"""
Returns the results of each task in the workflow.
Returns:
Dict[str, Any]: The results of each task in the workflow
"""
return {task.description: task.result for task in self.tasks}
def remove_task(self, task_description: str) -> None:
self.tasks = [
task for task in self.tasks if task.description != task_description
]
def update_task(self, task_description: str, **updates) -> None:
"""
Updates the arguments of a task in the workflow.
Args:
task_description (str): The description of the task to update.
**updates: The updates to apply to the task.
Raises:
ValueError: If the task is not found in the workflow.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.update_task("What's the weather in miami", max_tokens=1000)
>>> workflow.tasks[0].kwargs
{'max_tokens': 1000}
"""
for task in self.tasks:
if task.description == task_description:
task.kwargs.update(updates)
break
else:
raise ValueError(f"Task {task_description} not found in workflow.")
def save_workflow_state(
self, filepath: Optional[str] = "sequential_workflow_state.json", **kwargs
) -> None:
"""
Saves the workflow state to a json file.
Args:
filepath (str): The path to save the workflow state to.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.save_workflow_state("sequential_workflow_state.json")
"""
filepath = filepath or self.saved_state_filepath
with open(filepath, "w") as f:
# Saving the state as a json for simplicuty
state = {
"tasks": [
{
"description": task.description,
"args": task.args,
"kwargs": task.kwargs,
"result": task.result,
"history": task.history,
}
for task in self.tasks
],
"max_loops": self.max_loops,
}
json.dump(state, f, indent=4)
def workflow_bootup(self, **kwargs) -> None:
print(
colored(
"""
Sequential Workflow Initializing...""",
"green",
attrs=["bold", "underline"],
)
)
def workflow_dashboard(self, **kwargs) -> None:
"""
Displays a dashboard for the workflow.
Args:
**kwargs: Additional keyword arguments to pass to the dashboard.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.workflow_dashboard()
"""
print(
colored(
f"""
Sequential Workflow Dashboard
--------------------------------
Tasks: {len(self.tasks)}
Max Loops: {self.max_loops}
Autosave: {self.autosave}
Autosave Filepath: {self.saved_state_filepath}
Restore Filepath: {self.restore_state_filepath}
--------------------------------
Metadata:
kwargs: {kwargs}
""",
"cyan",
attrs=["bold", "underline"],
)
)
def workflow_shutdown(self, **kwargs) -> None:
print(
colored(
"""
Sequential Workflow Shutdown...""",
"red",
attrs=["bold", "underline"],
)
)
def add_objective_to_workflow(self, task: str, **kwargs) -> None:
print(
colored(
"""
Adding Objective to Workflow...""",
"green",
attrs=["bold", "underline"],
)
)
task = Task(description=task, flow=kwargs["flow"], args=list(kwargs["args"]), kwargs=kwargs["kwargs"])
self.tasks.append(task)
def load_workflow_state(self, filepath: str = None, **kwargs) -> None:
"""
Loads the workflow state from a json file and restores the workflow state.
Args:
filepath (str): The path to load the workflow state from.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.save_workflow_state("sequential_workflow_state.json")
>>> workflow.load_workflow_state("sequential_workflow_state.json")
"""
filepath = filepath or self.restore_state_filepath
with open(filepath, "r") as f:
state = json.load(f)
self.max_loops = state["max_loops"]
self.tasks = []
for task_state in state["tasks"]:
task = Task(
description=task_state["description"],
flow=task_state["flow"],
args=task_state["args"],
kwargs=task_state["kwargs"],
result=task_state["result"],
history=task_state["history"],
)
self.tasks.append(task)
def run(self) -> None:
"""
Run the workflow.
Raises:
ValueError: If a Flow instance is used as a task and the 'task' argument is not provided.
"""
try:
self.workflow_bootup()
for _ in range(self.max_loops):
for task in self.tasks:
# Check if the current task can be executed
if task.result is None:
# Check if the flow is a Flow and a 'task' argument is needed
if isinstance(task.flow, Flow):
# Ensure that 'task' is provided in the kwargs
if "task" not in task.kwargs:
raise ValueError(
f"The 'task' argument is required for the Flow flow execution in '{task.description}'"
)
# Separate the 'task' argument from other kwargs
flow_task_arg = task.kwargs.pop("task")
task.result = task.flow.run(
flow_task_arg, *task.args, **task.kwargs
)
else:
# If it's not a Flow instance, call the flow directly
task.result = task.flow(*task.args, **task.kwargs)
# Pass the result as an argument to the next task if it exists
next_task_index = self.tasks.index(task) + 1
if next_task_index < len(self.tasks):
next_task = self.tasks[next_task_index]
if isinstance(next_task.flow, Flow):
# For Flow flows, 'task' should be a keyword argument
next_task.kwargs["task"] = task.result
else:
# For other callable flows, the result is added to args
next_task.args.insert(0, task.result)
# Autosave the workflow state
if self.autosave:
self.save_workflow_state("sequential_workflow_state.json")
except Exception as e:
print(
colored(
f"Error initializing the Sequential workflow: {e} try optimizing your inputs like the flow class and task description",
"red",
attrs=["bold", "underline"],
)
)
async def arun(self) -> None:
"""
Asynchronously run the workflow.
Raises:
ValueError: If a Flow instance is used as a task and the 'task' argument is not provided.
"""
for _ in range(self.max_loops):
for task in self.tasks:
# Check if the current task can be executed
if task.result is None:
# Check if the flow is a Flow and a 'task' argument is needed
if isinstance(task.flow, Flow):
# Ensure that 'task' is provided in the kwargs
if "task" not in task.kwargs:
raise ValueError(
f"The 'task' argument is required for the Flow flow execution in '{task.description}'"
)
# Separate the 'task' argument from other kwargs
flow_task_arg = task.kwargs.pop("task")
task.result = await task.flow.arun(
flow_task_arg, *task.args, **task.kwargs
)
else:
# If it's not a Flow instance, call the flow directly
task.result = await task.flow(*task.args, **task.kwargs)
# Pass the result as an argument to the next task if it exists
next_task_index = self.tasks.index(task) + 1
if next_task_index < len(self.tasks):
next_task = self.tasks[next_task_index]
if isinstance(next_task.flow, Flow):
# For Flow flows, 'task' should be a keyword argument
next_task.kwargs["task"] = task.result
else:
# For other callable flows, the result is added to args
next_task.args.insert(0, task.result)
# Autosave the workflow state
if self.autosave:
self.save_workflow_state("sequential_workflow_state.json")