You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/models/clipq.py

181 lines
5.4 KiB

from io import BytesIO
import requests
import torch
from PIL import Image
from torchvision.transforms import GaussianBlur
from transformers import CLIPModel, CLIPProcessor
class CLIPQ:
"""CLIPQ model for image and text retrieval
Args:
model_name (str): The name of the CLIP model to use
query_text (str): The query text to use for the model
Example:
>>> clipq = CLIPQ()
>>> image = clipq.fetch_image_from_url()
>>> vectors = clipq.get_vectors(image)
"""
def __init__(
self,
model_name: str = "openai/clip-vit-base-patch16",
query_text: str = "A photo ",
*args,
**kwargs,
):
self.model = CLIPModel.from_pretrained(
model_name, *args, **kwargs
)
self.processor = CLIPProcessor.from_pretrained(model_name)
self.query_text = query_text
def fetch_image_from_url(self, url="https://picsum.photos/800"):
"""Fetches an image from the given url"""
response = requests.get(url)
if response.status_code != 200:
raise Exception("Failed to fetch an image")
image = Image.open(BytesIO(response.content))
return image
def load_image_from_path(self, path):
"""Loads an image from the given path"""
return Image.open(path)
def split_image(
self, image, h_splits: int = 2, v_splits: int = 2
):
"""Splits the given image into h_splits x v_splits parts"""
width, height = image.size
w_step, h_step = width // h_splits, height // v_splits
slices = []
for i in range(v_splits):
for j in range(h_splits):
slice = image.crop(
(
j * w_step,
i * h_step,
(j + 1) * w_step,
(i + 1) * h_step,
)
)
slices.append(slice)
return slices
def get_vectors(
self,
image,
h_splits: int = 2,
v_splits: int = 2,
):
"""Gets the vectors for the given image"""
slices = self.split_image(image, h_splits, v_splits)
vectors = []
for slice in slices:
inputs = self.processor(
text=self.query_text,
images=slice,
return_tensors="pt",
padding=True,
)
outputs = self.model(**inputs)
vectors.append(
outputs.image_embeds.squeeze().detach().numpy()
)
return vectors
def run_from_url(
self,
url: str = "https://picsum.photos/800",
h_splits: int = 2,
v_splits: int = 2,
):
"""Runs the model on the image fetched from the given url"""
image = self.fetch_image_from_url(url)
return self.get_vectors(image, h_splits, v_splits)
def check_hard_chunking(self, quadrants):
"""Check if the chunking is hard"""
variances = []
for quadrant in quadrants:
edge_pixels = torch.cat(
[
quadrant[0, 1],
quadrant[-1, :],
]
)
variances.append(torch.var(edge_pixels).item())
return variances
def embed_whole_image(self, image):
"""Embed the entire image"""
inputs = self.processor(
image,
return_tensors="pt",
)
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.image_embeds.squeeze()
def apply_noise_reduction(self, image, kernel_size: int = 5):
"""Implement an upscaling method to upscale the image and tiling issues"""
blur = GaussianBlur(kernel_size)
return blur(image)
def run_from_path(
self, path: str = None, h_splits: int = 2, v_splits: int = 2
):
"""Runs the model on the image loaded from the given path"""
image = self.load_image_from_path(path)
return self.get_vectors(image, h_splits, v_splits)
def get_captions(self, image, candidate_captions):
"""Get the best caption for the given image"""
inputs_image = self.processor(
images=image,
return_tensors="pt",
)
inputs_text = self.processor(
text=candidate_captions,
images=inputs_image.pixel_values[
0
], # Fix the argument name
return_tensors="pt",
padding=True,
truncation=True,
)
image_embeds = self.model(
pixel_values=inputs_image.pixel_values[0]
).image_embeds
text_embeds = self.model(
input_ids=inputs_text.input_ids,
attention_mask=inputs_text.attention_mask,
).text_embeds
# Calculate similarity between image and text
similarities = (image_embeds @ text_embeds.T).squeeze(0)
best_caption_index = similarities.argmax().item()
return candidate_captions[best_caption_index]
def get_and_concat_captions(
self, image, candidate_captions, h_splits=2, v_splits=2
):
"""Get the best caption for the given image"""
slices = self.split_image(image, h_splits, v_splits)
captions = [
self.get_captions(slice, candidate_captions)
for slice in slices
]
concated_captions = "".join(captions)
return concated_captions