You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2981 lines
106 KiB
2981 lines
106 KiB
import asyncio
|
|
import json
|
|
import logging
|
|
import os
|
|
import random
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from datetime import datetime
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
import toml
|
|
import yaml
|
|
from loguru import logger
|
|
from pydantic import BaseModel
|
|
|
|
from swarms.agents.ape_agent import auto_generate_prompt
|
|
from swarms.artifacts.main_artifact import Artifact
|
|
from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3
|
|
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
|
|
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
|
)
|
|
from swarms.prompts.tools import tool_sop_prompt
|
|
from swarms.schemas.agent_mcp_errors import (
|
|
AgentMCPConnectionError,
|
|
AgentMCPToolError,
|
|
)
|
|
from swarms.schemas.agent_step_schemas import ManySteps, Step
|
|
from swarms.schemas.base_schemas import (
|
|
AgentChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatMessageResponse,
|
|
)
|
|
from swarms.schemas.llm_agent_schema import ModelConfigOrigin
|
|
from swarms.structs.agent_rag_handler import (
|
|
RAGConfig,
|
|
AgentRAGHandler,
|
|
)
|
|
from swarms.structs.agent_roles import agent_roles
|
|
from swarms.structs.conversation import Conversation
|
|
from swarms.structs.safe_loading import (
|
|
SafeLoaderUtils,
|
|
SafeStateManager,
|
|
)
|
|
from swarms.telemetry.main import log_agent_data
|
|
from swarms.tools.base_tool import BaseTool
|
|
from swarms.tools.py_func_to_openai_func_str import (
|
|
convert_multiple_functions_to_openai_function_schema,
|
|
)
|
|
from swarms.utils.data_to_text import data_to_text
|
|
from swarms.utils.file_processing import create_file_in_folder
|
|
from swarms.utils.formatter import formatter
|
|
from swarms.utils.generate_keys import generate_api_key
|
|
from swarms.utils.history_output_formatter import (
|
|
history_output_formatter,
|
|
)
|
|
from swarms.utils.litellm_tokenizer import count_tokens
|
|
from swarms.utils.litellm_wrapper import LiteLLM
|
|
from swarms.utils.pdf_to_text import pdf_to_text
|
|
from swarms.prompts.react_base_prompt import REACT_SYS_PROMPT
|
|
from swarms.prompts.max_loop_prompt import generate_reasoning_prompt
|
|
from swarms.prompts.safety_prompt import SAFETY_PROMPT
|
|
from swarms.structs.ma_utils import set_random_models_for_agents
|
|
from swarms.tools.mcp_client_call import (
|
|
execute_multiple_tools_on_multiple_mcp_servers_sync,
|
|
execute_tool_call_simple,
|
|
get_mcp_tools_sync,
|
|
get_tools_for_multiple_mcp_servers,
|
|
)
|
|
from swarms.schemas.mcp_schemas import (
|
|
MCPConnection,
|
|
)
|
|
from swarms.utils.index import (
|
|
exists,
|
|
format_data_structure,
|
|
)
|
|
from swarms.schemas.conversation_schema import ConversationSchema
|
|
from swarms.utils.output_types import OutputType
|
|
|
|
|
|
def stop_when_repeats(response: str) -> bool:
|
|
# Stop if the word stop appears in the response
|
|
return "stop" in response.lower()
|
|
|
|
|
|
# Parse done token
|
|
def parse_done_token(response: str) -> bool:
|
|
"""Parse the response to see if the done token is present"""
|
|
return "<DONE>" in response
|
|
|
|
|
|
# Agent ID generator
|
|
def agent_id():
|
|
"""Generate an agent id"""
|
|
return uuid.uuid4().hex
|
|
|
|
|
|
# Agent output types
|
|
ToolUsageType = Union[BaseModel, Dict[str, Any]]
|
|
|
|
|
|
# Agent Exceptions
|
|
|
|
|
|
class AgentError(Exception):
|
|
"""Base class for all agent-related exceptions."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentInitializationError(AgentError):
|
|
"""Exception raised when the agent fails to initialize properly. Please check the configuration and parameters."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentRunError(AgentError):
|
|
"""Exception raised when the agent encounters an error during execution. Ensure that the task and environment are set up correctly."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentLLMError(AgentError):
|
|
"""Exception raised when there is an issue with the language model (LLM). Verify the model's availability and compatibility."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentToolError(AgentError):
|
|
"""Exception raised when the agent fails to utilize a tool. Check the tool's configuration and availability."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentMemoryError(AgentError):
|
|
"""Exception raised when the agent encounters a memory-related issue. Ensure that memory resources are properly allocated and accessible."""
|
|
|
|
pass
|
|
|
|
|
|
class AgentLLMInitializationError(AgentError):
|
|
"""Exception raised when the LLM fails to initialize properly. Please check the configuration and parameters."""
|
|
|
|
pass
|
|
|
|
|
|
# [FEAT][AGENT]
|
|
class Agent:
|
|
"""
|
|
Agent is the backbone to connect LLMs with tools and long term memory. Agent also provides the ability to
|
|
ingest any type of docs like PDFs, Txts, Markdown, Json, and etc for the agent. Here is a list of features.
|
|
|
|
Args:
|
|
llm (Any): The language model to use
|
|
template (str): The template to use
|
|
max_loops (int): The maximum number of loops to run
|
|
stopping_condition (Callable): The stopping condition to use
|
|
loop_interval (int): The loop interval
|
|
retry_attempts (int): The number of retry attempts
|
|
retry_interval (int): The retry interval
|
|
return_history (bool): Return the history
|
|
stopping_token (str): The stopping token
|
|
dynamic_loops (bool): Enable dynamic loops
|
|
interactive (bool): Enable interactive mode
|
|
dashboard (bool): Enable dashboard
|
|
agent_name (str): The name of the agent
|
|
agent_description (str): The description of the agent
|
|
system_prompt (str): The system prompt
|
|
tools (List[BaseTool]): The tools to use
|
|
dynamic_temperature_enabled (bool): Enable dynamic temperature
|
|
sop (str): The standard operating procedure
|
|
sop_list (List[str]): The standard operating procedure list
|
|
saved_state_path (str): The path to the saved state
|
|
autosave (bool): Autosave the state
|
|
context_length (int): The context length
|
|
user_name (str): The user name
|
|
self_healing_enabled (bool): Enable self healing
|
|
code_interpreter (bool): Enable code interpreter
|
|
multi_modal (bool): Enable multimodal
|
|
pdf_path (str): The path to the pdf
|
|
list_of_pdf (str): The list of pdf
|
|
tokenizer (Any): The tokenizer
|
|
long_term_memory (BaseVectorDatabase): The long term memory
|
|
preset_stopping_token (bool): Enable preset stopping token
|
|
traceback (Any): The traceback
|
|
traceback_handlers (Any): The traceback handlers
|
|
streaming_on (bool): Enable streaming
|
|
docs (List[str]): The list of documents
|
|
docs_folder (str): The folder containing the documents
|
|
verbose (bool): Enable verbose mode
|
|
parser (Callable): The parser to use
|
|
best_of_n (int): The number of best responses to return
|
|
callback (Callable): The callback function
|
|
metadata (Dict[str, Any]): The metadata
|
|
callbacks (List[Callable]): The list of callback functions
|
|
search_algorithm (Callable): The search algorithm
|
|
logs_to_filename (str): The filename for the logs
|
|
evaluator (Callable): The evaluator function
|
|
stopping_func (Callable): The stopping function
|
|
custom_loop_condition (Callable): The custom loop condition
|
|
sentiment_threshold (float): The sentiment threshold
|
|
custom_exit_command (str): The custom exit command
|
|
sentiment_analyzer (Callable): The sentiment analyzer
|
|
limit_tokens_from_string (Callable): The function to limit tokens from a string
|
|
custom_tools_prompt (Callable): The custom tools prompt
|
|
tool_schema (ToolUsageType): The tool schema
|
|
output_type (agent_output_type): The output type. Supported: 'str', 'string', 'list', 'json', 'dict', 'yaml', 'xml'.
|
|
function_calling_type (str): The function calling type
|
|
output_cleaner (Callable): The output cleaner function
|
|
function_calling_format_type (str): The function calling format type
|
|
list_base_models (List[BaseModel]): The list of base models
|
|
metadata_output_type (str): The metadata output type
|
|
state_save_file_type (str): The state save file type
|
|
chain_of_thoughts (bool): Enable chain of thoughts
|
|
algorithm_of_thoughts (bool): Enable algorithm of thoughts
|
|
tree_of_thoughts (bool): Enable tree of thoughts
|
|
tool_choice (str): The tool choice
|
|
execute_tool (bool): Enable tool execution
|
|
rules (str): The rules
|
|
planning (str): The planning
|
|
planning_prompt (str): The planning prompt
|
|
device (str): The device
|
|
custom_planning_prompt (str): The custom planning prompt
|
|
memory_chunk_size (int): The memory chunk size
|
|
agent_ops_on (bool): Enable agent operations
|
|
log_directory (str): The log directory
|
|
tool_system_prompt (str): The tool system prompt
|
|
max_tokens (int): The maximum number of tokens
|
|
frequency_penalty (float): The frequency penalty
|
|
presence_penalty (float): The presence penalty
|
|
temperature (float): The temperature
|
|
workspace_dir (str): The workspace directory
|
|
timeout (int): The timeout
|
|
artifacts_on (bool): Enable artifacts
|
|
artifacts_output_path (str): The artifacts output path
|
|
artifacts_file_extension (str): The artifacts file extension (.pdf, .md, .txt, )
|
|
scheduled_run_date (datetime): The date and time to schedule the task
|
|
|
|
Methods:
|
|
run: Run the agent
|
|
run_concurrent: Run the agent concurrently
|
|
bulk_run: Run the agent in bulk
|
|
save: Save the agent
|
|
load: Load the agent
|
|
validate_response: Validate the response
|
|
print_history_and_memory: Print the history and memory
|
|
step: Step through the agent
|
|
graceful_shutdown: Gracefully shutdown the agent
|
|
run_with_timeout: Run the agent with a timeout
|
|
analyze_feedback: Analyze the feedback
|
|
undo_last: Undo the last response
|
|
add_response_filter: Add a response filter
|
|
apply_response_filters: Apply the response filters
|
|
filtered_run: Run the agent with filtered responses
|
|
interactive_run: Run the agent in interactive mode
|
|
streamed_generation: Stream the generation of the response
|
|
save_state: Save the state
|
|
truncate_history: Truncate the history
|
|
add_task_to_memory: Add the task to the memory
|
|
print_dashboard: Print the dashboard
|
|
loop_count_print: Print the loop count
|
|
streaming: Stream the content
|
|
_history: Generate the history
|
|
_dynamic_prompt_setup: Setup the dynamic prompt
|
|
run_async: Run the agent asynchronously
|
|
run_async_concurrent: Run the agent asynchronously and concurrently
|
|
run_async_concurrent: Run the agent asynchronously and concurrently
|
|
construct_dynamic_prompt: Construct the dynamic prompt
|
|
handle_artifacts: Handle artifacts
|
|
|
|
|
|
Examples:
|
|
>>> from swarm_models import OpenAIChat
|
|
>>> from swarms.structs import Agent
|
|
>>> llm = OpenAIChat()
|
|
>>> agent = Agent(llm=llm, max_loops=1)
|
|
>>> response = agent.run("Generate a report on the financials.")
|
|
>>> print(response)
|
|
>>> # Generate a report on the financials.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
id: Optional[str] = agent_id(),
|
|
llm: Optional[Any] = None,
|
|
template: Optional[str] = None,
|
|
max_loops: Optional[int] = 1,
|
|
stopping_condition: Optional[Callable[[str], bool]] = None,
|
|
loop_interval: Optional[int] = 0,
|
|
retry_attempts: Optional[int] = 3,
|
|
retry_interval: Optional[int] = 1,
|
|
return_history: Optional[bool] = False,
|
|
stopping_token: Optional[str] = None,
|
|
dynamic_loops: Optional[bool] = False,
|
|
interactive: Optional[bool] = False,
|
|
dashboard: Optional[bool] = False,
|
|
agent_name: Optional[str] = "swarm-worker-01",
|
|
agent_description: Optional[str] = None,
|
|
system_prompt: Optional[str] = AGENT_SYSTEM_PROMPT_3,
|
|
# TODO: Change to callable, then parse the callable to a string
|
|
tools: List[Callable] = None,
|
|
dynamic_temperature_enabled: Optional[bool] = False,
|
|
sop: Optional[str] = None,
|
|
sop_list: Optional[List[str]] = None,
|
|
saved_state_path: Optional[str] = None,
|
|
autosave: Optional[bool] = False,
|
|
context_length: Optional[int] = 8192,
|
|
user_name: Optional[str] = "Human",
|
|
self_healing_enabled: Optional[bool] = False,
|
|
code_interpreter: Optional[bool] = False,
|
|
multi_modal: Optional[bool] = None,
|
|
pdf_path: Optional[str] = None,
|
|
list_of_pdf: Optional[str] = None,
|
|
tokenizer: Optional[Any] = None,
|
|
long_term_memory: Optional[Union[Callable, Any]] = None,
|
|
preset_stopping_token: Optional[bool] = False,
|
|
traceback: Optional[Any] = None,
|
|
traceback_handlers: Optional[Any] = None,
|
|
streaming_on: Optional[bool] = False,
|
|
docs: List[str] = None,
|
|
docs_folder: Optional[str] = None,
|
|
verbose: Optional[bool] = False,
|
|
parser: Optional[Callable] = None,
|
|
best_of_n: Optional[int] = None,
|
|
callback: Optional[Callable] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
callbacks: Optional[List[Callable]] = None,
|
|
search_algorithm: Optional[Callable] = None,
|
|
logs_to_filename: Optional[str] = None,
|
|
evaluator: Optional[Callable] = None, # Custom LLM or agent
|
|
stopping_func: Optional[Callable] = None,
|
|
custom_loop_condition: Optional[Callable] = None,
|
|
sentiment_threshold: Optional[
|
|
float
|
|
] = None, # Evaluate on output using an external model
|
|
custom_exit_command: Optional[str] = "exit",
|
|
sentiment_analyzer: Optional[Callable] = None,
|
|
limit_tokens_from_string: Optional[Callable] = None,
|
|
# [Tools]
|
|
custom_tools_prompt: Optional[Callable] = None,
|
|
tool_schema: ToolUsageType = None,
|
|
output_type: OutputType = "str-all-except-first",
|
|
function_calling_type: str = "json",
|
|
output_cleaner: Optional[Callable] = None,
|
|
function_calling_format_type: Optional[str] = "OpenAI",
|
|
list_base_models: Optional[List[BaseModel]] = None,
|
|
metadata_output_type: str = "json",
|
|
state_save_file_type: str = "json",
|
|
chain_of_thoughts: bool = False,
|
|
algorithm_of_thoughts: bool = False,
|
|
tree_of_thoughts: bool = False,
|
|
tool_choice: str = "auto",
|
|
rules: str = None, # type: ignore
|
|
planning: Optional[str] = False,
|
|
planning_prompt: Optional[str] = None,
|
|
custom_planning_prompt: str = None,
|
|
memory_chunk_size: int = 2000,
|
|
agent_ops_on: bool = False,
|
|
log_directory: str = None,
|
|
tool_system_prompt: str = tool_sop_prompt(),
|
|
max_tokens: int = 4096,
|
|
frequency_penalty: float = 0.8,
|
|
presence_penalty: float = 0.6,
|
|
temperature: float = 0.5,
|
|
workspace_dir: str = "agent_workspace",
|
|
timeout: Optional[int] = None,
|
|
# short_memory: Optional[str] = None,
|
|
created_at: float = time.time(),
|
|
return_step_meta: Optional[bool] = False,
|
|
tags: Optional[List[str]] = None,
|
|
use_cases: Optional[List[Dict[str, str]]] = None,
|
|
step_pool: List[Step] = [],
|
|
print_every_step: Optional[bool] = False,
|
|
time_created: Optional[str] = time.strftime(
|
|
"%Y-%m-%d %H:%M:%S", time.localtime()
|
|
),
|
|
agent_output: ManySteps = None,
|
|
data_memory: Optional[Callable] = None,
|
|
load_yaml_path: str = None,
|
|
auto_generate_prompt: bool = False,
|
|
rag_every_loop: bool = False,
|
|
plan_enabled: bool = False,
|
|
artifacts_on: bool = False,
|
|
artifacts_output_path: str = None,
|
|
artifacts_file_extension: str = None,
|
|
device: str = "cpu",
|
|
all_cores: bool = True,
|
|
device_id: int = 0,
|
|
scheduled_run_date: Optional[datetime] = None,
|
|
do_not_use_cluster_ops: bool = True,
|
|
all_gpus: bool = False,
|
|
model_name: str = None,
|
|
llm_args: dict = None,
|
|
load_state_path: str = None,
|
|
role: agent_roles = "worker",
|
|
no_print: bool = False,
|
|
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
|
|
mcp_url: Optional[Union[str, MCPConnection]] = None,
|
|
mcp_urls: List[str] = None,
|
|
react_on: bool = False,
|
|
safety_prompt_on: bool = False,
|
|
random_models_on: bool = False,
|
|
mcp_config: Optional[MCPConnection] = None,
|
|
top_p: Optional[float] = 0.90,
|
|
conversation_schema: Optional[ConversationSchema] = None,
|
|
aditional_llm_config: Optional[ModelConfigOrigin] = None,
|
|
llm_base_url: Optional[str] = None,
|
|
llm_api_key: Optional[str] = None,
|
|
rag_config: Optional[RAGConfig] = None,
|
|
tool_call_summary: bool = True,
|
|
output_raw_json_from_tool_call: bool = False,
|
|
summarize_multiple_images: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
# super().__init__(*args, **kwargs)
|
|
self.id = id
|
|
self.llm = llm
|
|
self.template = template
|
|
self.max_loops = max_loops
|
|
self.stopping_condition = stopping_condition
|
|
self.loop_interval = loop_interval
|
|
self.retry_attempts = retry_attempts
|
|
self.retry_interval = retry_interval
|
|
self.task = None
|
|
self.stopping_token = stopping_token
|
|
self.interactive = interactive
|
|
self.dashboard = dashboard
|
|
self.saved_state_path = saved_state_path
|
|
self.return_history = return_history
|
|
self.dynamic_temperature_enabled = dynamic_temperature_enabled
|
|
self.dynamic_loops = dynamic_loops
|
|
self.user_name = user_name
|
|
self.context_length = context_length
|
|
self.sop = sop
|
|
self.sop_list = sop_list
|
|
self.tools = tools
|
|
self.system_prompt = system_prompt
|
|
self.agent_name = agent_name
|
|
self.agent_description = agent_description
|
|
# self.saved_state_path = f"{self.agent_name}_{generate_api_key(prefix='agent-')}_state.json"
|
|
self.saved_state_path = (
|
|
f"{generate_api_key(prefix='agent-')}_state.json"
|
|
)
|
|
self.autosave = autosave
|
|
self.response_filters = []
|
|
self.self_healing_enabled = self_healing_enabled
|
|
self.code_interpreter = code_interpreter
|
|
self.multi_modal = multi_modal
|
|
self.pdf_path = pdf_path
|
|
self.list_of_pdf = list_of_pdf
|
|
self.tokenizer = tokenizer
|
|
self.long_term_memory = long_term_memory
|
|
self.preset_stopping_token = preset_stopping_token
|
|
self.traceback = traceback
|
|
self.traceback_handlers = traceback_handlers
|
|
self.streaming_on = streaming_on
|
|
self.docs = docs
|
|
self.docs_folder = docs_folder
|
|
self.verbose = verbose
|
|
self.parser = parser
|
|
self.best_of_n = best_of_n
|
|
self.callback = callback
|
|
self.metadata = metadata
|
|
self.callbacks = callbacks
|
|
self.search_algorithm = search_algorithm
|
|
self.logs_to_filename = logs_to_filename
|
|
self.evaluator = evaluator
|
|
self.stopping_func = stopping_func
|
|
self.custom_loop_condition = custom_loop_condition
|
|
self.sentiment_threshold = sentiment_threshold
|
|
self.custom_exit_command = custom_exit_command
|
|
self.sentiment_analyzer = sentiment_analyzer
|
|
self.limit_tokens_from_string = limit_tokens_from_string
|
|
self.tool_schema = tool_schema
|
|
self.output_type = output_type
|
|
self.function_calling_type = function_calling_type
|
|
self.output_cleaner = output_cleaner
|
|
self.function_calling_format_type = (
|
|
function_calling_format_type
|
|
)
|
|
self.list_base_models = list_base_models
|
|
self.metadata_output_type = metadata_output_type
|
|
self.state_save_file_type = state_save_file_type
|
|
self.chain_of_thoughts = chain_of_thoughts
|
|
self.algorithm_of_thoughts = algorithm_of_thoughts
|
|
self.tree_of_thoughts = tree_of_thoughts
|
|
self.tool_choice = tool_choice
|
|
self.planning = planning
|
|
self.planning_prompt = planning_prompt
|
|
self.custom_planning_prompt = custom_planning_prompt
|
|
self.rules = rules
|
|
self.custom_tools_prompt = custom_tools_prompt
|
|
self.memory_chunk_size = memory_chunk_size
|
|
self.agent_ops_on = agent_ops_on
|
|
self.log_directory = log_directory
|
|
self.tool_system_prompt = tool_system_prompt
|
|
self.max_tokens = max_tokens
|
|
self.frequency_penalty = frequency_penalty
|
|
self.presence_penalty = presence_penalty
|
|
self.temperature = temperature
|
|
self.workspace_dir = workspace_dir
|
|
self.timeout = timeout
|
|
self.created_at = created_at
|
|
self.return_step_meta = return_step_meta
|
|
self.tags = tags
|
|
self.use_cases = use_cases
|
|
self.name = agent_name
|
|
self.description = agent_description
|
|
self.agent_output = agent_output
|
|
self.step_pool = step_pool
|
|
self.print_every_step = print_every_step
|
|
self.time_created = time_created
|
|
self.data_memory = data_memory
|
|
self.load_yaml_path = load_yaml_path
|
|
self.tokenizer = tokenizer
|
|
self.auto_generate_prompt = auto_generate_prompt
|
|
self.rag_every_loop = rag_every_loop
|
|
self.plan_enabled = plan_enabled
|
|
self.artifacts_on = artifacts_on
|
|
self.artifacts_output_path = artifacts_output_path
|
|
self.artifacts_file_extension = artifacts_file_extension
|
|
self.device = device
|
|
self.all_cores = all_cores
|
|
self.device_id = device_id
|
|
self.scheduled_run_date = scheduled_run_date
|
|
self.do_not_use_cluster_ops = do_not_use_cluster_ops
|
|
self.all_gpus = all_gpus
|
|
self.model_name = model_name
|
|
self.llm_args = llm_args
|
|
self.load_state_path = load_state_path
|
|
self.role = role
|
|
self.no_print = no_print
|
|
self.tools_list_dictionary = tools_list_dictionary
|
|
self.mcp_url = mcp_url
|
|
self.mcp_urls = mcp_urls
|
|
self.react_on = react_on
|
|
self.safety_prompt_on = safety_prompt_on
|
|
self.random_models_on = random_models_on
|
|
self.mcp_config = mcp_config
|
|
self.top_p = top_p
|
|
self.conversation_schema = conversation_schema
|
|
self.aditional_llm_config = aditional_llm_config
|
|
self.llm_base_url = llm_base_url
|
|
self.llm_api_key = llm_api_key
|
|
self.rag_config = rag_config
|
|
self.tool_call_summary = tool_call_summary
|
|
self.output_raw_json_from_tool_call = (
|
|
output_raw_json_from_tool_call
|
|
)
|
|
self.summarize_multiple_images = summarize_multiple_images
|
|
|
|
# self.short_memory = self.short_memory_init()
|
|
|
|
# Initialize the feedback
|
|
self.feedback = []
|
|
|
|
# self.init_handling()
|
|
self.setup_config()
|
|
|
|
self.short_memory = self.short_memory_init()
|
|
|
|
if exists(self.docs_folder):
|
|
self.get_docs_from_doc_folders()
|
|
|
|
if exists(self.tool_schema) or exists(self.list_base_models):
|
|
self.handle_tool_schema_ops()
|
|
|
|
if exists(self.sop) or exists(self.sop_list):
|
|
self.handle_sop_ops()
|
|
|
|
if self.max_loops >= 2:
|
|
self.system_prompt += generate_reasoning_prompt(
|
|
self.max_loops
|
|
)
|
|
|
|
if self.react_on is True:
|
|
self.system_prompt += REACT_SYS_PROMPT
|
|
|
|
# Run sequential operations after all concurrent tasks are done
|
|
# self.agent_output = self.agent_output_model()
|
|
log_agent_data(self.to_dict())
|
|
|
|
if exists(self.tools):
|
|
self.tool_handling()
|
|
|
|
if self.llm is None:
|
|
self.llm = self.llm_handling()
|
|
|
|
if self.random_models_on is True:
|
|
self.model_name = set_random_models_for_agents()
|
|
|
|
if self.long_term_memory is not None:
|
|
self.rag_handler = self.rag_setup_handling()
|
|
|
|
if self.dashboard is True:
|
|
self.print_dashboard()
|
|
|
|
self.reliability_check()
|
|
|
|
def rag_setup_handling(self):
|
|
return AgentRAGHandler(
|
|
long_term_memory=self.long_term_memory,
|
|
config=self.rag_config,
|
|
agent_name=self.agent_name,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
def tool_handling(self):
|
|
|
|
self.tool_struct = BaseTool(
|
|
tools=self.tools,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
# Convert all the tools into a list of dictionaries
|
|
self.tools_list_dictionary = (
|
|
convert_multiple_functions_to_openai_function_schema(
|
|
self.tools
|
|
)
|
|
)
|
|
|
|
self.short_memory.add(
|
|
role=f"{self.agent_name}",
|
|
content=self.tools_list_dictionary,
|
|
)
|
|
|
|
def short_memory_init(self):
|
|
if (
|
|
self.agent_name is not None
|
|
or self.agent_description is not None
|
|
):
|
|
prompt = f"\n Your Name: {self.agent_name} \n\n Your Description: {self.agent_description} \n\n {self.system_prompt}"
|
|
else:
|
|
prompt = self.system_prompt
|
|
|
|
if self.safety_prompt_on is True:
|
|
prompt += SAFETY_PROMPT
|
|
|
|
# Initialize the short term memory
|
|
memory = Conversation(
|
|
system_prompt=prompt,
|
|
user=self.user_name,
|
|
rules=self.rules,
|
|
token_count=(
|
|
self.conversation_schema.count_tokens
|
|
if self.conversation_schema
|
|
else False
|
|
),
|
|
message_id_on=(
|
|
self.conversation_schema.message_id_on
|
|
if self.conversation_schema
|
|
else False
|
|
),
|
|
time_enabled=(
|
|
self.conversation_schema.time_enabled
|
|
if self.conversation_schema
|
|
else False
|
|
),
|
|
)
|
|
|
|
return memory
|
|
|
|
def agent_output_model(self):
|
|
# Many steps
|
|
id = agent_id()
|
|
|
|
return ManySteps(
|
|
agent_id=id,
|
|
agent_name=self.agent_name,
|
|
# run_id=run_id,
|
|
task="",
|
|
max_loops=self.max_loops,
|
|
steps=self.short_memory.to_dict(),
|
|
full_history=self.short_memory.get_str(),
|
|
total_tokens=count_tokens(
|
|
text=self.short_memory.get_str()
|
|
),
|
|
stopping_token=self.stopping_token,
|
|
interactive=self.interactive,
|
|
dynamic_temperature_enabled=self.dynamic_temperature_enabled,
|
|
)
|
|
|
|
def llm_handling(self):
|
|
# Use cached instance if available
|
|
if self.llm is not None:
|
|
return self.llm
|
|
|
|
if self.model_name is None:
|
|
self.model_name = "gpt-4o-mini"
|
|
|
|
if exists(self.tools) and len(self.tools) >= 2:
|
|
parallel_tool_calls = True
|
|
elif exists(self.mcp_url) or exists(self.mcp_urls):
|
|
parallel_tool_calls = True
|
|
elif exists(self.mcp_config):
|
|
parallel_tool_calls = True
|
|
else:
|
|
parallel_tool_calls = False
|
|
|
|
try:
|
|
# Simplify initialization logic
|
|
common_args = {
|
|
"model_name": self.model_name,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"system_prompt": self.system_prompt,
|
|
}
|
|
|
|
if self.llm_args is not None:
|
|
self.llm = LiteLLM(**{**common_args, **self.llm_args})
|
|
elif self.tools_list_dictionary is not None:
|
|
self.llm = LiteLLM(
|
|
**common_args,
|
|
tools_list_dictionary=self.tools_list_dictionary,
|
|
tool_choice="auto",
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
)
|
|
|
|
elif exists(self.mcp_url) or exists(self.mcp_urls):
|
|
self.llm = LiteLLM(
|
|
**common_args,
|
|
tools_list_dictionary=self.add_mcp_tools_to_memory(),
|
|
tool_choice="auto",
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
mcp_call=True,
|
|
)
|
|
else:
|
|
# common_args.update(self.aditional_llm_config.model_dump())
|
|
|
|
self.llm = LiteLLM(
|
|
**common_args,
|
|
stream=self.streaming_on,
|
|
)
|
|
|
|
return self.llm
|
|
except AgentLLMInitializationError as e:
|
|
logger.error(
|
|
f"Error in llm_handling: {e} Your current configuration is not supported. Please check the configuration and parameters."
|
|
)
|
|
return None
|
|
|
|
def add_mcp_tools_to_memory(self):
|
|
"""
|
|
Adds MCP tools to the agent's short-term memory.
|
|
|
|
This function checks for either a single MCP URL or multiple MCP URLs and adds the available tools
|
|
to the agent's memory. The tools are listed in JSON format.
|
|
|
|
Raises:
|
|
Exception: If there's an error accessing the MCP tools
|
|
"""
|
|
try:
|
|
if exists(self.mcp_url):
|
|
tools = get_mcp_tools_sync(server_path=self.mcp_url)
|
|
elif exists(self.mcp_config):
|
|
tools = get_mcp_tools_sync(connection=self.mcp_config)
|
|
# logger.info(f"Tools: {tools}")
|
|
elif exists(self.mcp_urls):
|
|
tools = get_tools_for_multiple_mcp_servers(
|
|
urls=self.mcp_urls,
|
|
output_type="str",
|
|
)
|
|
# print(f"Tools: {tools} for {self.mcp_urls}")
|
|
else:
|
|
raise AgentMCPConnectionError(
|
|
"mcp_url must be either a string URL or MCPConnection object"
|
|
)
|
|
|
|
if (
|
|
exists(self.mcp_url)
|
|
or exists(self.mcp_urls)
|
|
or exists(self.mcp_config)
|
|
):
|
|
self.pretty_print(
|
|
f"✨ [SYSTEM] Successfully integrated {len(tools)} MCP tools into agent: {self.agent_name} | Status: ONLINE | Time: {time.strftime('%H:%M:%S')} ✨",
|
|
loop_count=0,
|
|
)
|
|
|
|
return tools
|
|
except AgentMCPConnectionError as e:
|
|
logger.error(f"Error in MCP connection: {e}")
|
|
raise e
|
|
|
|
def setup_config(self):
|
|
# The max_loops will be set dynamically if the dynamic_loop
|
|
if self.dynamic_loops is True:
|
|
logger.info("Dynamic loops enabled")
|
|
self.max_loops = "auto"
|
|
|
|
# If multimodal = yes then set the sop to the multimodal sop
|
|
if self.multi_modal is True:
|
|
self.sop = MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1
|
|
|
|
# If the preset stopping token is enabled then set the stopping token to the preset stopping token
|
|
if self.preset_stopping_token is not None:
|
|
self.stopping_token = "<DONE>"
|
|
|
|
def prepare_tools_list_dictionary(self):
|
|
import json
|
|
|
|
return json.loads(self.tools_list_dictionary)
|
|
|
|
def check_model_supports_utilities(self, img: str = None) -> bool:
|
|
"""
|
|
Check if the current model supports vision capabilities.
|
|
|
|
Args:
|
|
img (str, optional): Image input to check vision support for. Defaults to None.
|
|
|
|
Returns:
|
|
bool: True if model supports vision and image is provided, False otherwise.
|
|
"""
|
|
from litellm.utils import supports_vision
|
|
|
|
# Only check vision support if an image is provided
|
|
if img is not None:
|
|
out = supports_vision(self.model_name)
|
|
if not out:
|
|
raise ValueError(
|
|
f"Model {self.model_name} does not support vision capabilities. Please use a vision-enabled model."
|
|
)
|
|
return out
|
|
|
|
return False
|
|
|
|
def check_if_no_prompt_then_autogenerate(self, task: str = None):
|
|
"""
|
|
Checks if auto_generate_prompt is enabled and generates a prompt by combining agent name, description and system prompt if available.
|
|
Falls back to task if all other fields are missing.
|
|
|
|
Args:
|
|
task (str, optional): The task to use as a fallback if name, description and system prompt are missing. Defaults to None.
|
|
"""
|
|
if self.auto_generate_prompt is True:
|
|
# Collect all available prompt components
|
|
components = []
|
|
|
|
if self.agent_name:
|
|
components.append(self.agent_name)
|
|
|
|
if self.agent_description:
|
|
components.append(self.agent_description)
|
|
|
|
if self.system_prompt:
|
|
components.append(self.system_prompt)
|
|
|
|
# If no components available, fall back to task
|
|
if not components and task:
|
|
logger.warning(
|
|
"No agent details found. Using task as fallback for prompt generation."
|
|
)
|
|
self.system_prompt = auto_generate_prompt(
|
|
task=task, model=self.llm
|
|
)
|
|
else:
|
|
# Combine all available components
|
|
combined_prompt = " ".join(components)
|
|
logger.info(
|
|
f"Auto-generating prompt from: {', '.join(components)}"
|
|
)
|
|
self.system_prompt = auto_generate_prompt(
|
|
combined_prompt, self.llm
|
|
)
|
|
self.short_memory.add(
|
|
role="system", content=self.system_prompt
|
|
)
|
|
|
|
logger.info("Auto-generated prompt successfully.")
|
|
|
|
def set_system_prompt(self, system_prompt: str):
|
|
"""Set the system prompt"""
|
|
self.system_prompt = system_prompt
|
|
|
|
def provide_feedback(self, feedback: str) -> None:
|
|
"""Allow users to provide feedback on the responses."""
|
|
self.feedback.append(feedback)
|
|
logging.info(f"Feedback received: {feedback}")
|
|
|
|
def _check_stopping_condition(self, response: str) -> bool:
|
|
"""Check if the stopping condition is met."""
|
|
try:
|
|
if self.stopping_condition:
|
|
return self.stopping_condition(response)
|
|
return False
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error checking stopping condition: {error}"
|
|
)
|
|
|
|
def dynamic_temperature(self):
|
|
"""
|
|
1. Check the self.llm object for the temperature
|
|
2. If the temperature is not present, then use the default temperature
|
|
3. If the temperature is present, then dynamically change the temperature
|
|
4. for every loop you can randomly change the temperature on a scale from 0.0 to 1.0
|
|
"""
|
|
try:
|
|
if hasattr(self.llm, "temperature"):
|
|
# Randomly change the temperature attribute of self.llm object
|
|
self.llm.temperature = random.uniform(0.0, 1.0)
|
|
else:
|
|
# Use a default temperature
|
|
self.llm.temperature = 0.5
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error dynamically changing temperature: {error}"
|
|
)
|
|
|
|
def print_dashboard(self):
|
|
tools_activated = True if self.tools is not None else False
|
|
mcp_activated = True if self.mcp_url is not None else False
|
|
formatter.print_panel(
|
|
f"""
|
|
|
|
🤖 Agent {self.agent_name} Dashboard 🚀
|
|
════════════════════════════════════════════════════════════
|
|
|
|
🎯 Agent {self.agent_name} Status: ONLINE & OPERATIONAL
|
|
────────────────────────────────────────────────────────────
|
|
|
|
📋 Agent Identity:
|
|
• 🏷️ Name: {self.agent_name}
|
|
• 📝 Description: {self.agent_description}
|
|
|
|
⚙️ Technical Specifications:
|
|
• 🤖 Model: {self.model_name}
|
|
• 🔄 Internal Loops: {self.max_loops}
|
|
• 🎯 Max Tokens: {self.max_tokens}
|
|
• 🌡️ Dynamic Temperature: {self.dynamic_temperature_enabled}
|
|
|
|
🔧 System Modules:
|
|
• 🛠️ Tools Activated: {tools_activated}
|
|
• 🔗 MCP Activated: {mcp_activated}
|
|
|
|
════════════════════════════════════════════════════════════
|
|
🚀 Ready for Tasks 🚀
|
|
|
|
""",
|
|
title=f"Agent {self.agent_name} Dashboard",
|
|
)
|
|
|
|
# Main function
|
|
def _run(
|
|
self,
|
|
task: Optional[Union[str, Any]] = None,
|
|
img: Optional[str] = None,
|
|
print_task: Optional[bool] = False,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
run the agent
|
|
|
|
Args:
|
|
task (str): The task to be performed.
|
|
img (str): The image to be processed.
|
|
is_last (bool): Indicates if this is the last task.
|
|
|
|
Returns:
|
|
Any: The output of the agent.
|
|
(string, list, json, dict, yaml, xml)
|
|
|
|
Examples:
|
|
agent(task="What is the capital of France?")
|
|
agent(task="What is the capital of France?", img="path/to/image.jpg")
|
|
agent(task="What is the capital of France?", img="path/to/image.jpg", is_last=True)
|
|
"""
|
|
try:
|
|
|
|
self.check_if_no_prompt_then_autogenerate(task)
|
|
|
|
if img is not None:
|
|
self.check_model_supports_utilities(img=img)
|
|
|
|
self.short_memory.add(role=self.user_name, content=task)
|
|
|
|
if self.plan_enabled or self.planning_prompt is not None:
|
|
self.plan(task)
|
|
|
|
# Set the loop count
|
|
loop_count = 0
|
|
|
|
# Clear the short memory
|
|
response = None
|
|
|
|
# Query the long term memory first for the context
|
|
if self.long_term_memory is not None:
|
|
self.memory_query(task)
|
|
|
|
# Autosave
|
|
if self.autosave:
|
|
log_agent_data(self.to_dict())
|
|
self.save()
|
|
|
|
# Print the request
|
|
if print_task is True:
|
|
formatter.print_panel(
|
|
f"\n User: {task}",
|
|
f"Task Request for {self.agent_name}",
|
|
)
|
|
|
|
while (
|
|
self.max_loops == "auto"
|
|
or loop_count < self.max_loops
|
|
):
|
|
loop_count += 1
|
|
|
|
if self.max_loops >= 2:
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=f"Current Internal Reasoning Loop: {loop_count}/{self.max_loops}",
|
|
)
|
|
|
|
# If it is the final loop, then add the final loop message
|
|
if loop_count >= 2 and loop_count == self.max_loops:
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=f"🎉 Final Internal Reasoning Loop: {loop_count}/{self.max_loops} Prepare your comprehensive response.",
|
|
)
|
|
|
|
# Dynamic temperature
|
|
if self.dynamic_temperature_enabled is True:
|
|
self.dynamic_temperature()
|
|
|
|
# Task prompt
|
|
task_prompt = (
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
|
|
# Parameters
|
|
attempt = 0
|
|
success = False
|
|
while attempt < self.retry_attempts and not success:
|
|
try:
|
|
if (
|
|
self.long_term_memory is not None
|
|
and self.rag_every_loop is True
|
|
):
|
|
logger.info(
|
|
"Querying RAG database for context..."
|
|
)
|
|
self.memory_query(task_prompt)
|
|
|
|
if img is not None:
|
|
response = self.call_llm(
|
|
task=task_prompt,
|
|
img=img,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
response = self.call_llm(
|
|
task=task_prompt, *args, **kwargs
|
|
)
|
|
|
|
# Parse the response from the agent with the output type
|
|
if exists(self.tools_list_dictionary):
|
|
if isinstance(response, BaseModel):
|
|
response = response.model_dump()
|
|
|
|
# Parse the response from the agent with the output type
|
|
response = self.parse_llm_output(response)
|
|
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=response,
|
|
)
|
|
|
|
# Print
|
|
self.pretty_print(response, loop_count)
|
|
|
|
# Handle tools
|
|
if (
|
|
hasattr(self, "tool_struct")
|
|
and self.tool_struct is not None
|
|
and self.output_raw_json_from_tool_call
|
|
is True
|
|
):
|
|
response = response
|
|
else:
|
|
# Only execute tools if response is not None
|
|
if response is not None:
|
|
self.execute_tools(
|
|
response=response,
|
|
loop_count=loop_count,
|
|
)
|
|
else:
|
|
logger.warning(
|
|
f"LLM returned None response in loop {loop_count}, skipping tool execution"
|
|
)
|
|
|
|
# Handle MCP tools
|
|
if (
|
|
exists(self.mcp_url)
|
|
or exists(self.mcp_config)
|
|
or exists(self.mcp_urls)
|
|
):
|
|
# Only handle MCP tools if response is not None
|
|
if response is not None:
|
|
self.mcp_tool_handling(
|
|
response=response,
|
|
current_loop=loop_count,
|
|
)
|
|
else:
|
|
logger.warning(
|
|
f"LLM returned None response in loop {loop_count}, skipping MCP tool handling"
|
|
)
|
|
|
|
self.sentiment_and_evaluator(response)
|
|
|
|
success = True # Mark as successful to exit the retry loop
|
|
|
|
except Exception as e:
|
|
|
|
log_agent_data(self.to_dict())
|
|
|
|
if self.autosave is True:
|
|
self.save()
|
|
|
|
logger.error(
|
|
f"Attempt {attempt+1}: Error generating"
|
|
f" response: {e}"
|
|
)
|
|
attempt += 1
|
|
|
|
if not success:
|
|
|
|
log_agent_data(self.to_dict())
|
|
|
|
if self.autosave is True:
|
|
self.save()
|
|
|
|
logger.error(
|
|
"Failed to generate a valid response after"
|
|
" retry attempts."
|
|
)
|
|
break # Exit the loop if all retry attempts fail
|
|
|
|
# Check stopping conditions
|
|
if (
|
|
self.stopping_condition is not None
|
|
and self._check_stopping_condition(response)
|
|
):
|
|
logger.info("Stopping condition met.")
|
|
break
|
|
elif (
|
|
self.stopping_func is not None
|
|
and self.stopping_func(response)
|
|
):
|
|
logger.info("Stopping function met.")
|
|
break
|
|
|
|
if self.interactive:
|
|
# logger.info("Interactive mode enabled.")
|
|
user_input = input("You: ")
|
|
|
|
# User-defined exit command
|
|
if (
|
|
user_input.lower()
|
|
== self.custom_exit_command.lower()
|
|
):
|
|
self.pretty_print(
|
|
"Exiting as per user request.",
|
|
loop_count=loop_count,
|
|
)
|
|
break
|
|
|
|
self.short_memory.add(
|
|
role=self.user_name, content=user_input
|
|
)
|
|
|
|
if self.loop_interval:
|
|
logger.info(
|
|
f"Sleeping for {self.loop_interval} seconds"
|
|
)
|
|
time.sleep(self.loop_interval)
|
|
|
|
if self.autosave is True:
|
|
log_agent_data(self.to_dict())
|
|
|
|
self.save()
|
|
|
|
log_agent_data(self.to_dict())
|
|
|
|
# Output formatting based on output_type
|
|
return history_output_formatter(
|
|
self.short_memory, type=self.output_type
|
|
)
|
|
|
|
except Exception as error:
|
|
self._handle_run_error(error)
|
|
|
|
except KeyboardInterrupt as error:
|
|
self._handle_run_error(error)
|
|
|
|
def __handle_run_error(self, error: any):
|
|
log_agent_data(self.to_dict())
|
|
|
|
if self.autosave is True:
|
|
self.save()
|
|
|
|
logger.info(
|
|
f"Error detected running your agent {self.agent_name} \n Error {error} \n Optimize your input parameters and or add an issue on the swarms github and contact our team on discord for support ;) "
|
|
)
|
|
raise error
|
|
|
|
def _handle_run_error(self, error: any):
|
|
process_thread = threading.Thread(
|
|
target=self.__handle_run_error,
|
|
args=(error,),
|
|
daemon=True,
|
|
)
|
|
process_thread.start()
|
|
|
|
async def arun(
|
|
self,
|
|
task: Optional[str] = None,
|
|
img: Optional[str] = None,
|
|
is_last: bool = False,
|
|
device: str = "cpu", # gpu
|
|
device_id: int = 1,
|
|
all_cores: bool = True,
|
|
do_not_use_cluster_ops: bool = True,
|
|
all_gpus: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Asynchronously runs the agent with the specified parameters.
|
|
|
|
Args:
|
|
task (Optional[str]): The task to be performed. Defaults to None.
|
|
img (Optional[str]): The image to be processed. Defaults to None.
|
|
is_last (bool): Indicates if this is the last task. Defaults to False.
|
|
device (str): The device to use for execution. Defaults to "cpu".
|
|
device_id (int): The ID of the GPU to use if device is set to "gpu". Defaults to 1.
|
|
all_cores (bool): If True, uses all available CPU cores. Defaults to True.
|
|
do_not_use_cluster_ops (bool): If True, does not use cluster operations. Defaults to True.
|
|
all_gpus (bool): If True, uses all available GPUs. Defaults to False.
|
|
*args: Additional positional arguments.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the asynchronous operation.
|
|
|
|
Raises:
|
|
Exception: If an error occurs during the asynchronous operation.
|
|
"""
|
|
try:
|
|
return await asyncio.to_thread(
|
|
self.run,
|
|
task=task,
|
|
img=img,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
except Exception as error:
|
|
await self._handle_run_error(
|
|
error
|
|
) # Ensure this is also async if needed
|
|
|
|
def __call__(
|
|
self,
|
|
task: Optional[str] = None,
|
|
img: Optional[str] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""Call the agent
|
|
|
|
Args:
|
|
task (Optional[str]): The task to be performed. Defaults to None.
|
|
img (Optional[str]): The image to be processed. Defaults to None.
|
|
"""
|
|
try:
|
|
return self.run(
|
|
task=task,
|
|
img=img,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
except Exception as error:
|
|
self._handle_run_error(error)
|
|
|
|
def receive_message(
|
|
self, agent_name: str, task: str, *args, **kwargs
|
|
):
|
|
improved_prompt = (
|
|
f"You have received a message from agent '{agent_name}':\n\n"
|
|
f'"{task}"\n\n'
|
|
"Please process this message and respond appropriately."
|
|
)
|
|
return self.run(task=improved_prompt, *args, **kwargs)
|
|
|
|
# def parse_and_execute_tools(self, response: str, *args, **kwargs):
|
|
# max_retries = 3 # Maximum number of retries
|
|
# retries = 0
|
|
# while retries < max_retries:
|
|
# try:
|
|
# logger.info("Executing tool...")
|
|
|
|
# # try to Execute the tool and return a string
|
|
# out = parse_and_execute_json(
|
|
# functions=self.tools,
|
|
# json_string=response,
|
|
# parse_md=True,
|
|
# *args,
|
|
# **kwargs,
|
|
# )
|
|
# logger.info(f"Tool Output: {out}")
|
|
# # Add the output to the memory
|
|
# # self.short_memory.add(
|
|
# # role="Tool Executor",
|
|
# # content=out,
|
|
# # )
|
|
# return out
|
|
# except Exception as error:
|
|
# retries += 1
|
|
# logger.error(
|
|
# f"Attempt {retries}: Error executing tool: {error}"
|
|
# )
|
|
# if retries == max_retries:
|
|
# raise error
|
|
# time.sleep(1) # Wait for a bit before retrying
|
|
|
|
def add_memory(self, message: str):
|
|
"""Add a memory to the agent
|
|
|
|
Args:
|
|
message (str): _description_
|
|
|
|
Returns:
|
|
_type_: _description_
|
|
"""
|
|
logger.info(f"Adding memory: {message}")
|
|
|
|
return self.short_memory.add(
|
|
role=self.agent_name, content=message
|
|
)
|
|
|
|
def plan(self, task: str, *args, **kwargs) -> None:
|
|
"""
|
|
Create a strategic plan for executing the given task.
|
|
|
|
This method generates a step-by-step plan by combining the conversation
|
|
history, planning prompt, and current task. The plan is then added to
|
|
the agent's short-term memory for reference during execution.
|
|
|
|
Args:
|
|
task (str): The task to create a plan for
|
|
*args: Additional positional arguments passed to the LLM
|
|
**kwargs: Additional keyword arguments passed to the LLM
|
|
|
|
Returns:
|
|
None: The plan is stored in memory rather than returned
|
|
|
|
Raises:
|
|
Exception: If planning fails, the original exception is re-raised
|
|
"""
|
|
try:
|
|
# Get the current conversation history
|
|
history = self.short_memory.get_str()
|
|
|
|
# Construct the planning prompt by combining history, planning prompt, and task
|
|
planning_prompt = (
|
|
f"{history}\n\n{self.planning_prompt}\n\nTask: {task}"
|
|
)
|
|
|
|
# Generate the plan using the LLM
|
|
plan = self.llm.run(task=planning_prompt, *args, **kwargs)
|
|
|
|
# Store the generated plan in short-term memory
|
|
self.short_memory.add(role=self.agent_name, content=plan)
|
|
|
|
logger.info(
|
|
f"Successfully created plan for task: {task[:50]}..."
|
|
)
|
|
return None
|
|
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Failed to create plan for task '{task}': {error}"
|
|
)
|
|
raise error
|
|
|
|
async def run_concurrent(self, task: str, *args, **kwargs):
|
|
"""
|
|
Run a task concurrently.
|
|
|
|
Args:
|
|
task (str): The task to run.
|
|
"""
|
|
try:
|
|
logger.info(f"Running concurrent task: {task}")
|
|
future = self.executor.submit(
|
|
self.run, task, *args, **kwargs
|
|
)
|
|
result = await asyncio.wrap_future(future)
|
|
logger.info(f"Completed task: {result}")
|
|
return result
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error running agent: {error} while running concurrently"
|
|
)
|
|
|
|
def run_concurrent_tasks(self, tasks: List[str], *args, **kwargs):
|
|
"""
|
|
Run multiple tasks concurrently.
|
|
|
|
Args:
|
|
tasks (List[str]): A list of tasks to run.
|
|
"""
|
|
try:
|
|
logger.info(f"Running concurrent tasks: {tasks}")
|
|
futures = [
|
|
self.executor.submit(
|
|
self.run, task=task, *args, **kwargs
|
|
)
|
|
for task in tasks
|
|
]
|
|
results = [future.result() for future in futures]
|
|
logger.info(f"Completed tasks: {results}")
|
|
return results
|
|
except Exception as error:
|
|
logger.error(f"Error running concurrent tasks: {error}")
|
|
|
|
def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]:
|
|
"""
|
|
Generate responses for multiple input sets.
|
|
|
|
Args:
|
|
inputs (List[Dict[str, Any]]): A list of input dictionaries containing the necessary data for each run.
|
|
|
|
Returns:
|
|
List[str]: A list of response strings generated for each input set.
|
|
|
|
Raises:
|
|
Exception: If an error occurs while running the bulk tasks.
|
|
"""
|
|
try:
|
|
logger.info(f"Running bulk tasks: {inputs}")
|
|
return [self.run(**input_data) for input_data in inputs]
|
|
except Exception as error:
|
|
logger.info(f"Error running bulk run: {error}", "red")
|
|
|
|
async def arun_batched(
|
|
self,
|
|
tasks: List[str],
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""Asynchronously runs a batch of tasks."""
|
|
try:
|
|
# Create a list of coroutines for each task
|
|
coroutines = [
|
|
self.arun(task=task, *args, **kwargs)
|
|
for task in tasks
|
|
]
|
|
# Use asyncio.gather to run them concurrently
|
|
results = await asyncio.gather(*coroutines)
|
|
return results
|
|
except Exception as error:
|
|
logger.error(f"Error running batched tasks: {error}")
|
|
raise
|
|
|
|
def reliability_check(self):
|
|
from litellm.utils import (
|
|
supports_function_calling,
|
|
get_max_tokens,
|
|
)
|
|
from litellm import model_list
|
|
|
|
if self.system_prompt is None:
|
|
logger.warning(
|
|
"The system prompt is not set. Please set a system prompt for the agent to improve reliability."
|
|
)
|
|
|
|
if self.agent_name is None:
|
|
logger.warning(
|
|
"The agent name is not set. Please set an agent name to improve reliability."
|
|
)
|
|
|
|
if self.max_loops is None or self.max_loops == 0:
|
|
raise AgentInitializationError(
|
|
"Max loops is not provided or is set to 0. Please set max loops to 1 or more."
|
|
)
|
|
|
|
if self.max_tokens is None or self.max_tokens == 0:
|
|
self.max_tokens = get_max_tokens(self.model_name)
|
|
|
|
if self.context_length is None or self.context_length == 0:
|
|
raise AgentInitializationError(
|
|
"Context length is not provided. Please set a valid context length."
|
|
)
|
|
|
|
if self.tools_list_dictionary is not None:
|
|
if not supports_function_calling(self.model_name):
|
|
raise AgentInitializationError(
|
|
f"The model '{self.model_name}' does not support function calling. Please use a model that supports function calling."
|
|
)
|
|
|
|
if self.max_tokens > get_max_tokens(self.model_name):
|
|
raise AgentInitializationError(
|
|
f"Max tokens is set to {self.max_tokens}, but the model '{self.model_name}' only supports {get_max_tokens(self.model_name)} tokens. Please set max tokens to {get_max_tokens(self.model_name)} or less."
|
|
)
|
|
|
|
if self.model_name not in model_list:
|
|
logger.warning(
|
|
f"The model '{self.model_name}' is not supported. Please use a supported model, or override the model name with the 'llm' parameter, which should be a class with a 'run(task: str)' method or a '__call__' method."
|
|
)
|
|
|
|
def save(self, file_path: str = None) -> None:
|
|
"""
|
|
Save the agent state to a file using SafeStateManager with atomic writing
|
|
and backup functionality. Automatically handles complex objects and class instances.
|
|
|
|
Args:
|
|
file_path (str, optional): Custom path to save the state.
|
|
If None, uses configured paths.
|
|
|
|
Raises:
|
|
OSError: If there are filesystem-related errors
|
|
Exception: For other unexpected errors
|
|
"""
|
|
try:
|
|
# Determine the save path
|
|
resolved_path = (
|
|
file_path
|
|
or self.saved_state_path
|
|
or f"{self.agent_name}_state.json"
|
|
)
|
|
|
|
# Ensure path has .json extension
|
|
if not resolved_path.endswith(".json"):
|
|
resolved_path += ".json"
|
|
|
|
# Create full path including workspace directory
|
|
full_path = os.path.join(
|
|
self.workspace_dir, resolved_path
|
|
)
|
|
backup_path = full_path + ".backup"
|
|
temp_path = full_path + ".temp"
|
|
|
|
# Ensure workspace directory exists
|
|
os.makedirs(os.path.dirname(full_path), exist_ok=True)
|
|
|
|
# First save to temporary file using SafeStateManager
|
|
SafeStateManager.save_state(self, temp_path)
|
|
|
|
# If current file exists, create backup
|
|
if os.path.exists(full_path):
|
|
try:
|
|
os.replace(full_path, backup_path)
|
|
except Exception as e:
|
|
logger.warning(f"Could not create backup: {e}")
|
|
|
|
# Move temporary file to final location
|
|
os.replace(temp_path, full_path)
|
|
|
|
# Clean up old backup if everything succeeded
|
|
if os.path.exists(backup_path):
|
|
try:
|
|
os.remove(backup_path)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Could not remove backup file: {e}"
|
|
)
|
|
|
|
# Log saved state information if verbose
|
|
if self.verbose:
|
|
self._log_saved_state_info(full_path)
|
|
|
|
logger.info(
|
|
f"Successfully saved agent state to: {full_path}"
|
|
)
|
|
|
|
# Handle additional component saves
|
|
self._save_additional_components(full_path)
|
|
|
|
except OSError as e:
|
|
logger.error(
|
|
f"Filesystem error while saving agent state: {e}"
|
|
)
|
|
raise
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error saving agent state: {e}")
|
|
raise
|
|
|
|
def _save_additional_components(self, base_path: str) -> None:
|
|
"""Save additional agent components like memory."""
|
|
try:
|
|
# Save long term memory if it exists
|
|
if (
|
|
hasattr(self, "long_term_memory")
|
|
and self.long_term_memory is not None
|
|
):
|
|
memory_path = (
|
|
f"{os.path.splitext(base_path)[0]}_memory.json"
|
|
)
|
|
try:
|
|
self.long_term_memory.save(memory_path)
|
|
logger.info(
|
|
f"Saved long-term memory to: {memory_path}"
|
|
)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Could not save long-term memory: {e}"
|
|
)
|
|
|
|
# Save memory manager if it exists
|
|
if (
|
|
hasattr(self, "memory_manager")
|
|
and self.memory_manager is not None
|
|
):
|
|
manager_path = f"{os.path.splitext(base_path)[0]}_memory_manager.json"
|
|
try:
|
|
self.memory_manager.save_memory_snapshot(
|
|
manager_path
|
|
)
|
|
logger.info(
|
|
f"Saved memory manager state to: {manager_path}"
|
|
)
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Could not save memory manager: {e}"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Error saving additional components: {e}")
|
|
|
|
def enable_autosave(self, interval: int = 300) -> None:
|
|
"""
|
|
Enable automatic saving of agent state using SafeStateManager at specified intervals.
|
|
|
|
Args:
|
|
interval (int): Time between saves in seconds. Defaults to 300 (5 minutes).
|
|
"""
|
|
|
|
def autosave_loop():
|
|
while self.autosave:
|
|
try:
|
|
self.save()
|
|
if self.verbose:
|
|
logger.debug(
|
|
f"Autosaved agent state (interval: {interval}s)"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Autosave failed: {e}")
|
|
time.sleep(interval)
|
|
|
|
self.autosave = True
|
|
self.autosave_thread = threading.Thread(
|
|
target=autosave_loop,
|
|
daemon=True,
|
|
name=f"{self.agent_name}_autosave",
|
|
)
|
|
self.autosave_thread.start()
|
|
logger.info(f"Enabled autosave with {interval}s interval")
|
|
|
|
def disable_autosave(self) -> None:
|
|
"""Disable automatic saving of agent state."""
|
|
if hasattr(self, "autosave"):
|
|
self.autosave = False
|
|
if hasattr(self, "autosave_thread"):
|
|
self.autosave_thread.join(timeout=1)
|
|
delattr(self, "autosave_thread")
|
|
logger.info("Disabled autosave")
|
|
|
|
def cleanup(self) -> None:
|
|
"""Cleanup method to be called on exit. Ensures final state is saved."""
|
|
try:
|
|
if getattr(self, "autosave", False):
|
|
logger.info(
|
|
"Performing final autosave before exit..."
|
|
)
|
|
self.disable_autosave()
|
|
self.save()
|
|
except Exception as e:
|
|
logger.error(f"Error during cleanup: {e}")
|
|
|
|
def load(self, file_path: str = None) -> None:
|
|
"""
|
|
Load agent state from a file using SafeStateManager.
|
|
Automatically preserves class instances and complex objects.
|
|
|
|
Args:
|
|
file_path (str, optional): Path to load state from.
|
|
If None, uses default path from agent config.
|
|
|
|
Raises:
|
|
FileNotFoundError: If state file doesn't exist
|
|
Exception: If there's an error during loading
|
|
"""
|
|
try:
|
|
# Resolve load path conditionally with a check for self.load_state_path
|
|
resolved_path = (
|
|
file_path
|
|
or self.load_state_path
|
|
or (
|
|
f"{self.saved_state_path}.json"
|
|
if self.saved_state_path
|
|
else (
|
|
f"{self.agent_name}.json"
|
|
if self.agent_name
|
|
else (
|
|
f"{self.workspace_dir}/{self.agent_name}_state.json"
|
|
if self.workspace_dir and self.agent_name
|
|
else None
|
|
)
|
|
)
|
|
)
|
|
)
|
|
|
|
# Load state using SafeStateManager
|
|
SafeStateManager.load_state(self, resolved_path)
|
|
|
|
# Reinitialize any necessary runtime components
|
|
self._reinitialize_after_load()
|
|
|
|
if self.verbose:
|
|
self._log_loaded_state_info(resolved_path)
|
|
|
|
except FileNotFoundError:
|
|
logger.error(f"State file not found: {resolved_path}")
|
|
raise
|
|
except Exception as e:
|
|
logger.error(f"Error loading agent state: {e}")
|
|
raise
|
|
|
|
def _reinitialize_after_load(self) -> None:
|
|
"""
|
|
Reinitialize necessary components after loading state.
|
|
Called automatically after load() to ensure all components are properly set up.
|
|
"""
|
|
try:
|
|
# Reinitialize conversation if needed
|
|
if (
|
|
not hasattr(self, "short_memory")
|
|
or self.short_memory is None
|
|
):
|
|
self.short_memory = Conversation(
|
|
system_prompt=self.system_prompt,
|
|
time_enabled=False,
|
|
user=self.user_name,
|
|
rules=self.rules,
|
|
)
|
|
|
|
# Reinitialize executor if needed
|
|
# if not hasattr(self, "executor") or self.executor is None:
|
|
with ThreadPoolExecutor(
|
|
max_workers=os.cpu_count()
|
|
) as executor:
|
|
self.executor = executor
|
|
|
|
# # Reinitialize tool structure if needed
|
|
# if hasattr(self, 'tools') and (self.tools or getattr(self, 'list_base_models', None)):
|
|
# self.tool_struct = BaseTool(
|
|
# tools=self.tools,
|
|
# base_models=getattr(self, 'list_base_models', None),
|
|
# tool_system_prompt=self.tool_system_prompt
|
|
# )
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error reinitializing components: {e}")
|
|
raise
|
|
|
|
def _log_saved_state_info(self, file_path: str) -> None:
|
|
"""Log information about saved state for debugging"""
|
|
try:
|
|
state_dict = SafeLoaderUtils.create_state_dict(self)
|
|
preserved = SafeLoaderUtils.preserve_instances(self)
|
|
|
|
logger.info(f"Saved agent state to: {file_path}")
|
|
logger.debug(
|
|
f"Saved {len(state_dict)} configuration values"
|
|
)
|
|
logger.debug(
|
|
f"Preserved {len(preserved)} class instances"
|
|
)
|
|
|
|
if self.verbose:
|
|
logger.debug("Preserved instances:")
|
|
for name, instance in preserved.items():
|
|
logger.debug(
|
|
f" - {name}: {type(instance).__name__}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error logging state info: {e}")
|
|
|
|
def _log_loaded_state_info(self, file_path: str) -> None:
|
|
"""Log information about loaded state for debugging"""
|
|
try:
|
|
state_dict = SafeLoaderUtils.create_state_dict(self)
|
|
preserved = SafeLoaderUtils.preserve_instances(self)
|
|
|
|
logger.info(f"Loaded agent state from: {file_path}")
|
|
logger.debug(
|
|
f"Loaded {len(state_dict)} configuration values"
|
|
)
|
|
logger.debug(
|
|
f"Preserved {len(preserved)} class instances"
|
|
)
|
|
|
|
if self.verbose:
|
|
logger.debug("Current class instances:")
|
|
for name, instance in preserved.items():
|
|
logger.debug(
|
|
f" - {name}: {type(instance).__name__}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error logging state info: {e}")
|
|
|
|
def get_saveable_state(self) -> Dict[str, Any]:
|
|
"""
|
|
Get a dictionary of all saveable state values.
|
|
Useful for debugging or manual state inspection.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Dictionary of saveable values
|
|
"""
|
|
return SafeLoaderUtils.create_state_dict(self)
|
|
|
|
def get_preserved_instances(self) -> Dict[str, Any]:
|
|
"""
|
|
Get a dictionary of all preserved class instances.
|
|
Useful for debugging or manual state inspection.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Dictionary of preserved instances
|
|
"""
|
|
return SafeLoaderUtils.preserve_instances(self)
|
|
|
|
def graceful_shutdown(self):
|
|
"""Gracefully shutdown the system saving the state"""
|
|
logger.info("Shutting down the system...")
|
|
return self.save()
|
|
|
|
def analyze_feedback(self):
|
|
"""Analyze the feedback for issues"""
|
|
feedback_counts = {}
|
|
for feedback in self.feedback:
|
|
if feedback in feedback_counts:
|
|
feedback_counts[feedback] += 1
|
|
else:
|
|
feedback_counts[feedback] = 1
|
|
print(f"Feedback counts: {feedback_counts}")
|
|
|
|
def undo_last(self) -> Tuple[str, str]:
|
|
"""
|
|
Response the last response and return the previous state
|
|
|
|
Example:
|
|
# Feature 2: Undo functionality
|
|
response = agent.run("Another task")
|
|
print(f"Response: {response}")
|
|
previous_state, message = agent.undo_last()
|
|
print(message)
|
|
|
|
"""
|
|
if len(self.short_memory) < 2:
|
|
return None, None
|
|
|
|
# Remove the last response but keep the last state, short_memory is a dict
|
|
self.short_memory.delete(-1)
|
|
|
|
# Get the previous state
|
|
previous_state = self.short_memory[-1]
|
|
return previous_state, f"Restored to {previous_state}"
|
|
|
|
# Response Filtering
|
|
def add_response_filter(self, filter_word: str) -> None:
|
|
"""
|
|
Add a response filter to filter out certain words from the response
|
|
|
|
Example:
|
|
agent.add_response_filter("Trump")
|
|
agent.run("Generate a report on Trump")
|
|
|
|
|
|
"""
|
|
logger.info(f"Adding response filter: {filter_word}")
|
|
self.reponse_filters.append(filter_word)
|
|
|
|
def apply_reponse_filters(self, response: str) -> str:
|
|
"""
|
|
Apply the response filters to the response
|
|
|
|
"""
|
|
logger.info(
|
|
f"Applying response filters to response: {response}"
|
|
)
|
|
for word in self.response_filters:
|
|
response = response.replace(word, "[FILTERED]")
|
|
return response
|
|
|
|
def filtered_run(self, task: str) -> str:
|
|
"""
|
|
# Feature 3: Response filtering
|
|
agent.add_response_filter("report")
|
|
response = agent.filtered_run("Generate a report on finance")
|
|
print(response)
|
|
"""
|
|
logger.info(f"Running filtered task: {task}")
|
|
raw_response = self.run(task)
|
|
return self.apply_response_filters(raw_response)
|
|
|
|
def save_to_yaml(self, file_path: str) -> None:
|
|
"""
|
|
Save the agent to a YAML file
|
|
|
|
Args:
|
|
file_path (str): The path to the YAML file
|
|
"""
|
|
try:
|
|
logger.info(f"Saving agent to YAML file: {file_path}")
|
|
with open(file_path, "w") as f:
|
|
yaml.dump(self.to_dict(), f)
|
|
except Exception as error:
|
|
logger.error(f"Error saving agent to YAML: {error}")
|
|
raise error
|
|
|
|
def get_llm_parameters(self):
|
|
return str(vars(self.llm))
|
|
|
|
def update_system_prompt(self, system_prompt: str):
|
|
"""Upddate the system message"""
|
|
self.system_prompt = system_prompt
|
|
|
|
def update_max_loops(self, max_loops: int):
|
|
"""Update the max loops"""
|
|
self.max_loops = max_loops
|
|
|
|
def update_loop_interval(self, loop_interval: int):
|
|
"""Update the loop interval"""
|
|
self.loop_interval = loop_interval
|
|
|
|
def update_retry_attempts(self, retry_attempts: int):
|
|
"""Update the retry attempts"""
|
|
self.retry_attempts = retry_attempts
|
|
|
|
def update_retry_interval(self, retry_interval: int):
|
|
"""Update the retry interval"""
|
|
self.retry_interval = retry_interval
|
|
|
|
def reset(self):
|
|
"""Reset the agent"""
|
|
self.short_memory = None
|
|
|
|
def ingest_docs(self, docs: List[str], *args, **kwargs):
|
|
"""Ingest the docs into the memory
|
|
|
|
Args:
|
|
docs (List[str]): Documents of pdfs, text, csvs
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
for doc in docs:
|
|
data = data_to_text(doc)
|
|
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=data
|
|
)
|
|
except Exception as error:
|
|
logger.info(f"Error ingesting docs: {error}", "red")
|
|
|
|
def ingest_pdf(self, pdf: str):
|
|
"""Ingest the pdf into the memory
|
|
|
|
Args:
|
|
pdf (str): file path of pdf
|
|
"""
|
|
try:
|
|
logger.info(f"Ingesting pdf: {pdf}")
|
|
text = pdf_to_text(pdf)
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=text
|
|
)
|
|
except Exception as error:
|
|
logger.info(f"Error ingesting pdf: {error}", "red")
|
|
|
|
def receieve_message(self, name: str, message: str):
|
|
"""Receieve a message"""
|
|
try:
|
|
message = f"{name}: {message}"
|
|
return self.short_memory.add(role=name, content=message)
|
|
except Exception as error:
|
|
logger.info(f"Error receiving message: {error}")
|
|
raise error
|
|
|
|
def send_agent_message(
|
|
self, agent_name: str, message: str, *args, **kwargs
|
|
):
|
|
"""Send a message to the agent"""
|
|
try:
|
|
logger.info(f"Sending agent message: {message}")
|
|
message = f"To: {agent_name}: {message}"
|
|
return self.run(message, *args, **kwargs)
|
|
except Exception as error:
|
|
logger.info(f"Error sending agent message: {error}")
|
|
raise error
|
|
|
|
def add_tool(self, tool: Callable):
|
|
"""Add a single tool to the agent's tools list.
|
|
|
|
Args:
|
|
tool (Callable): The tool function to add
|
|
|
|
Returns:
|
|
The result of appending the tool to the tools list
|
|
"""
|
|
logger.info(f"Adding tool: {tool.__name__}")
|
|
return self.tools.append(tool)
|
|
|
|
def add_tools(self, tools: List[Callable]):
|
|
"""Add multiple tools to the agent's tools list.
|
|
|
|
Args:
|
|
tools (List[Callable]): List of tool functions to add
|
|
|
|
Returns:
|
|
The result of extending the tools list
|
|
"""
|
|
logger.info(f"Adding tools: {[t.__name__ for t in tools]}")
|
|
return self.tools.extend(tools)
|
|
|
|
def remove_tool(self, tool: Callable):
|
|
"""Remove a single tool from the agent's tools list.
|
|
|
|
Args:
|
|
tool (Callable): The tool function to remove
|
|
|
|
Returns:
|
|
The result of removing the tool from the tools list
|
|
"""
|
|
logger.info(f"Removing tool: {tool.__name__}")
|
|
return self.tools.remove(tool)
|
|
|
|
def remove_tools(self, tools: List[Callable]):
|
|
"""Remove multiple tools from the agent's tools list.
|
|
|
|
Args:
|
|
tools (List[Callable]): List of tool functions to remove
|
|
"""
|
|
logger.info(f"Removing tools: {[t.__name__ for t in tools]}")
|
|
for tool in tools:
|
|
self.tools.remove(tool)
|
|
|
|
def get_docs_from_doc_folders(self):
|
|
"""Get the docs from the files"""
|
|
try:
|
|
logger.info("Getting docs from doc folders")
|
|
# Get the list of files then extract them and add them to the memory
|
|
files = os.listdir(self.docs_folder)
|
|
|
|
# Extract the text from the files
|
|
# Process each file and combine their contents
|
|
all_text = ""
|
|
for file in files:
|
|
file_path = os.path.join(self.docs_folder, file)
|
|
text = data_to_text(file_path)
|
|
all_text += f"\nContent from {file}:\n{text}\n"
|
|
|
|
# Add the combined content to memory
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=all_text
|
|
)
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error getting docs from doc folders: {error}"
|
|
)
|
|
raise error
|
|
|
|
def memory_query(self, task: str = None, *args, **kwargs) -> None:
|
|
try:
|
|
# Query the long term memory
|
|
if self.long_term_memory is not None:
|
|
formatter.print_panel(f"Querying RAG for: {task}")
|
|
|
|
memory_retrieval = self.long_term_memory.query(
|
|
task, *args, **kwargs
|
|
)
|
|
|
|
memory_retrieval = (
|
|
f"Documents Available: {str(memory_retrieval)}"
|
|
)
|
|
|
|
# # Count the tokens
|
|
# memory_token_count = count_tokens(
|
|
# memory_retrieval
|
|
# )
|
|
# if memory_token_count > self.memory_chunk_size:
|
|
# # Truncate the memory by the memory chunk size
|
|
# memory_retrieval = self.truncate_string_by_tokens(
|
|
# memory_retrieval, self.memory_chunk_size
|
|
# )
|
|
|
|
self.short_memory.add(
|
|
role="Database",
|
|
content=memory_retrieval,
|
|
)
|
|
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"An error occurred: {e}")
|
|
raise e
|
|
|
|
def sentiment_analysis_handler(self, response: str = None):
|
|
"""
|
|
Performs sentiment analysis on the given response and stores the result in the short-term memory.
|
|
|
|
Args:
|
|
response (str): The response to analyze sentiment for.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
# Sentiment analysis
|
|
if self.sentiment_analyzer:
|
|
sentiment = self.sentiment_analyzer(response)
|
|
print(f"Sentiment: {sentiment}")
|
|
|
|
if sentiment > self.sentiment_threshold:
|
|
print(
|
|
f"Sentiment: {sentiment} is above"
|
|
" threshold:"
|
|
f" {self.sentiment_threshold}"
|
|
)
|
|
elif sentiment < self.sentiment_threshold:
|
|
print(
|
|
f"Sentiment: {sentiment} is below"
|
|
" threshold:"
|
|
f" {self.sentiment_threshold}"
|
|
)
|
|
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=sentiment,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error occurred during sentiment analysis: {e}")
|
|
|
|
def stream_response(
|
|
self, response: str, delay: float = 0.001
|
|
) -> None:
|
|
"""
|
|
Streams the response token by token.
|
|
|
|
Args:
|
|
response (str): The response text to be streamed.
|
|
delay (float, optional): Delay in seconds between printing each token. Default is 0.1 seconds.
|
|
|
|
Raises:
|
|
ValueError: If the response is not provided.
|
|
Exception: For any errors encountered during the streaming process.
|
|
|
|
Example:
|
|
response = "This is a sample response from the API."
|
|
stream_response(response)
|
|
"""
|
|
# Check for required inputs
|
|
if not response:
|
|
raise ValueError("Response is required.")
|
|
|
|
try:
|
|
# Stream and print the response token by token
|
|
for token in response.split():
|
|
print(token, end=" ", flush=True)
|
|
time.sleep(delay)
|
|
print() # Ensure a newline after streaming
|
|
except Exception as e:
|
|
print(f"An error occurred during streaming: {e}")
|
|
|
|
def check_available_tokens(self):
|
|
# Log the amount of tokens left in the memory and in the task
|
|
if self.tokenizer is not None:
|
|
tokens_used = count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
logger.info(
|
|
f"Tokens available: {self.context_length - tokens_used}"
|
|
)
|
|
|
|
return tokens_used
|
|
|
|
def tokens_checks(self):
|
|
# Check the tokens available
|
|
tokens_used = count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
out = self.check_available_tokens()
|
|
|
|
logger.info(
|
|
f"Tokens available: {out} Context Length: {self.context_length} Tokens in memory: {tokens_used}"
|
|
)
|
|
|
|
return out
|
|
|
|
def log_step_metadata(
|
|
self, loop: int, task: str, response: str
|
|
) -> Step:
|
|
"""Log metadata for each step of agent execution."""
|
|
# Generate unique step ID
|
|
step_id = f"step_{loop}_{uuid.uuid4().hex}"
|
|
|
|
# Calculate token usage
|
|
# full_memory = self.short_memory.return_history_as_string()
|
|
# prompt_tokens = count_tokens(full_memory)
|
|
# completion_tokens = count_tokens(response)
|
|
# total_tokens = prompt_tokens + completion_tokens
|
|
total_tokens = (count_tokens(task) + count_tokens(response),)
|
|
|
|
# # Get memory responses
|
|
# memory_responses = {
|
|
# "short_term": (
|
|
# self.short_memory.return_history_as_string()
|
|
# if self.short_memory
|
|
# else None
|
|
# ),
|
|
# "long_term": (
|
|
# self.long_term_memory.query(task)
|
|
# if self.long_term_memory
|
|
# else None
|
|
# ),
|
|
# }
|
|
|
|
# # Get tool responses if tool was used
|
|
# if self.tools:
|
|
# try:
|
|
# tool_call_output = parse_and_execute_json(
|
|
# self.tools, response, parse_md=True
|
|
# )
|
|
# if tool_call_output:
|
|
# {
|
|
# "tool_name": tool_call_output.get(
|
|
# "tool_name", "unknown"
|
|
# ),
|
|
# "tool_args": tool_call_output.get("args", {}),
|
|
# "tool_output": str(
|
|
# tool_call_output.get("output", "")
|
|
# ),
|
|
# }
|
|
# except Exception as e:
|
|
# logger.debug(
|
|
# f"No tool call detected in response: {e}"
|
|
# )
|
|
|
|
# Create memory usage tracking
|
|
# memory_usage = {
|
|
# "short_term": (
|
|
# len(self.short_memory.messages)
|
|
# if self.short_memory
|
|
# else 0
|
|
# ),
|
|
# "long_term": (
|
|
# self.long_term_memory.count
|
|
# if self.long_term_memory
|
|
# else 0
|
|
# ),
|
|
# "responses": memory_responses,
|
|
# }
|
|
|
|
step_log = Step(
|
|
step_id=step_id,
|
|
time=time.time(),
|
|
tokens=total_tokens,
|
|
response=AgentChatCompletionResponse(
|
|
id=self.id,
|
|
agent_name=self.agent_name,
|
|
object="chat.completion",
|
|
choices=ChatCompletionResponseChoice(
|
|
index=loop,
|
|
input=task,
|
|
message=ChatMessageResponse(
|
|
role=self.agent_name,
|
|
content=response,
|
|
),
|
|
),
|
|
# usage=UsageInfo(
|
|
# prompt_tokens=prompt_tokens,
|
|
# completion_tokens=completion_tokens,
|
|
# total_tokens=total_tokens,
|
|
# ),
|
|
# tool_calls=(
|
|
# [] if tool_response is None else [tool_response]
|
|
# ),
|
|
# memory_usage=None,
|
|
),
|
|
)
|
|
|
|
# Update total tokens if agent_output exists
|
|
# if hasattr(self, "agent_output"):
|
|
# self.agent_output.total_tokens += (
|
|
# self.response.total_tokens
|
|
# )
|
|
|
|
# Add step to agent output tracking
|
|
self.step_pool.append(step_log)
|
|
|
|
def update_tool_usage(
|
|
self,
|
|
step_id: str,
|
|
tool_name: str,
|
|
tool_args: dict,
|
|
tool_response: Any,
|
|
):
|
|
"""Update tool usage information for a specific step."""
|
|
for step in self.agent_output.steps:
|
|
if step.step_id == step_id:
|
|
step.response.tool_calls.append(
|
|
{
|
|
"tool": tool_name,
|
|
"arguments": tool_args,
|
|
"response": str(tool_response),
|
|
}
|
|
)
|
|
break
|
|
|
|
def _serialize_callable(
|
|
self, attr_value: Callable
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Serializes callable attributes by extracting their name and docstring.
|
|
|
|
Args:
|
|
attr_value (Callable): The callable to serialize.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Dictionary with name and docstring of the callable.
|
|
"""
|
|
return {
|
|
"name": getattr(
|
|
attr_value, "__name__", type(attr_value).__name__
|
|
),
|
|
"doc": getattr(attr_value, "__doc__", None),
|
|
}
|
|
|
|
def _serialize_attr(self, attr_name: str, attr_value: Any) -> Any:
|
|
"""
|
|
Serializes an individual attribute, handling non-serializable objects.
|
|
|
|
Args:
|
|
attr_name (str): The name of the attribute.
|
|
attr_value (Any): The value of the attribute.
|
|
|
|
Returns:
|
|
Any: The serialized value of the attribute.
|
|
"""
|
|
try:
|
|
if callable(attr_value):
|
|
return self._serialize_callable(attr_value)
|
|
elif hasattr(attr_value, "to_dict"):
|
|
return (
|
|
attr_value.to_dict()
|
|
) # Recursive serialization for nested objects
|
|
else:
|
|
json.dumps(
|
|
attr_value
|
|
) # Attempt to serialize to catch non-serializable objects
|
|
return attr_value
|
|
except (TypeError, ValueError):
|
|
return f"<Non-serializable: {type(attr_value).__name__}>"
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Converts all attributes of the class, including callables, into a dictionary.
|
|
Handles non-serializable attributes by converting them or skipping them.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary representation of the class attributes.
|
|
"""
|
|
return {
|
|
attr_name: self._serialize_attr(attr_name, attr_value)
|
|
for attr_name, attr_value in self.__dict__.items()
|
|
}
|
|
|
|
def to_json(self, indent: int = 4, *args, **kwargs):
|
|
return json.dumps(
|
|
self.to_dict(), indent=indent, *args, **kwargs
|
|
)
|
|
|
|
def to_yaml(self, indent: int = 4, *args, **kwargs):
|
|
return yaml.dump(
|
|
self.to_dict(), indent=indent, *args, **kwargs
|
|
)
|
|
|
|
def to_toml(self, *args, **kwargs):
|
|
return toml.dumps(self.to_dict(), *args, **kwargs)
|
|
|
|
def model_dump_json(self):
|
|
logger.info(
|
|
f"Saving {self.agent_name} model to JSON in the {self.workspace_dir} directory"
|
|
)
|
|
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
f"{self.agent_name}.json",
|
|
str(self.to_json()),
|
|
)
|
|
|
|
return f"Model saved to {self.workspace_dir}/{self.agent_name}.json"
|
|
|
|
def model_dump_yaml(self):
|
|
logger.info(
|
|
f"Saving {self.agent_name} model to YAML in the {self.workspace_dir} directory"
|
|
)
|
|
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
f"{self.agent_name}.yaml",
|
|
str(self.to_yaml()),
|
|
)
|
|
|
|
return f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml"
|
|
|
|
def handle_tool_schema_ops(self):
|
|
if exists(self.tool_schema):
|
|
logger.info(f"Tool schema provided: {self.tool_schema}")
|
|
|
|
output = self.tool_struct.base_model_to_dict(
|
|
self.tool_schema, output_str=True
|
|
)
|
|
|
|
# Add the tool schema to the short memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=output
|
|
)
|
|
|
|
# If multiple base models, then conver them.
|
|
if exists(self.list_base_models):
|
|
logger.info(
|
|
"Multiple base models provided, Automatically converting to OpenAI function"
|
|
)
|
|
|
|
schemas = self.tool_struct.multi_base_models_to_dict(
|
|
output_str=True
|
|
)
|
|
|
|
# If the output is a string then add it to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=schemas
|
|
)
|
|
|
|
return None
|
|
|
|
def call_llm(
|
|
self, task: str, img: Optional[str] = None, *args, **kwargs
|
|
) -> str:
|
|
"""
|
|
Calls the appropriate method on the `llm` object based on the given task.
|
|
|
|
Args:
|
|
task (str): The task to be performed by the `llm` object.
|
|
img (str, optional): Path or URL to an image file.
|
|
audio (str, optional): Path or URL to an audio file.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
str: The result of the method call on the `llm` object.
|
|
|
|
Raises:
|
|
AttributeError: If no suitable method is found in the llm object.
|
|
TypeError: If task is not a string or llm object is None.
|
|
ValueError: If task is empty.
|
|
"""
|
|
|
|
try:
|
|
if img is not None:
|
|
out = self.llm.run(
|
|
task=task, img=img, *args, **kwargs
|
|
)
|
|
else:
|
|
out = self.llm.run(task=task, *args, **kwargs)
|
|
|
|
return out
|
|
except AgentLLMError as e:
|
|
logger.error(
|
|
f"Error calling LLM: {e}. Task: {task}, Args: {args}, Kwargs: {kwargs}"
|
|
)
|
|
raise e
|
|
|
|
def handle_sop_ops(self):
|
|
# If the user inputs a list of strings for the sop then join them and set the sop
|
|
if exists(self.sop_list):
|
|
self.sop = "\n".join(self.sop_list)
|
|
self.short_memory.add(
|
|
role=self.user_name, content=self.sop
|
|
)
|
|
|
|
if exists(self.sop):
|
|
self.short_memory.add(
|
|
role=self.user_name, content=self.sop
|
|
)
|
|
|
|
logger.info("SOP Uploaded into the memory")
|
|
|
|
def run(
|
|
self,
|
|
task: Optional[Union[str, Any]] = None,
|
|
img: Optional[str] = None,
|
|
imgs: Optional[List[str]] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Executes the agent's run method on a specified device, with optional scheduling.
|
|
|
|
This method attempts to execute the agent's run method on a specified device, either CPU or GPU. It logs the device selection and the number of cores or GPU ID used. If the device is set to CPU, it can use all available cores or a specific core specified by `device_id`. If the device is set to GPU, it uses the GPU specified by `device_id`.
|
|
|
|
If a `scheduled_date` is provided, the method will wait until that date and time before executing the task.
|
|
|
|
Args:
|
|
task (Optional[str], optional): The task to be executed. Defaults to None.
|
|
img (Optional[str], optional): The image to be processed. Defaults to None.
|
|
imgs (Optional[List[str]], optional): The list of images to be processed. Defaults to None.
|
|
*args: Additional positional arguments to be passed to the execution method.
|
|
**kwargs: Additional keyword arguments to be passed to the execution method.
|
|
|
|
Returns:
|
|
Any: The result of the execution.
|
|
|
|
Raises:
|
|
ValueError: If an invalid device is specified.
|
|
Exception: If any other error occurs during execution.
|
|
"""
|
|
|
|
if not isinstance(task, str):
|
|
task = format_data_structure(task)
|
|
|
|
try:
|
|
if exists(imgs):
|
|
output = self.run_multiple_images(
|
|
task=task, imgs=imgs, *args, **kwargs
|
|
)
|
|
else:
|
|
output = self._run(
|
|
task=task,
|
|
img=img,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
return output
|
|
|
|
except ValueError as e:
|
|
self._handle_run_error(e)
|
|
|
|
def handle_artifacts(
|
|
self, text: str, file_output_path: str, file_extension: str
|
|
) -> None:
|
|
"""Handle creating and saving artifacts with error handling."""
|
|
try:
|
|
# Ensure file_extension starts with a dot
|
|
if not file_extension.startswith("."):
|
|
file_extension = "." + file_extension
|
|
|
|
# If file_output_path doesn't have an extension, treat it as a directory
|
|
# and create a default filename based on timestamp
|
|
if not os.path.splitext(file_output_path)[1]:
|
|
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
|
filename = f"artifact_{timestamp}{file_extension}"
|
|
full_path = os.path.join(file_output_path, filename)
|
|
else:
|
|
full_path = file_output_path
|
|
|
|
# Create the directory if it doesn't exist
|
|
os.makedirs(os.path.dirname(full_path), exist_ok=True)
|
|
|
|
logger.info(f"Creating artifact for file: {full_path}")
|
|
artifact = Artifact(
|
|
file_path=full_path,
|
|
file_type=file_extension,
|
|
contents=text,
|
|
edit_count=0,
|
|
)
|
|
|
|
logger.info(
|
|
f"Saving artifact with extension: {file_extension}"
|
|
)
|
|
artifact.save_as(file_extension)
|
|
logger.success(
|
|
f"Successfully saved artifact to {full_path}"
|
|
)
|
|
|
|
except ValueError as e:
|
|
logger.error(
|
|
f"Invalid input values for artifact: {str(e)}"
|
|
)
|
|
raise
|
|
except IOError as e:
|
|
logger.error(f"Error saving artifact to file: {str(e)}")
|
|
raise
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Unexpected error handling artifact: {str(e)}"
|
|
)
|
|
raise
|
|
|
|
def showcase_config(self):
|
|
|
|
# Convert all values in config_dict to concise string representations
|
|
config_dict = self.to_dict()
|
|
for key, value in config_dict.items():
|
|
if isinstance(value, list):
|
|
# Format list as a comma-separated string
|
|
config_dict[key] = ", ".join(
|
|
str(item) for item in value
|
|
)
|
|
elif isinstance(value, dict):
|
|
# Format dict as key-value pairs in a single string
|
|
config_dict[key] = ", ".join(
|
|
f"{k}: {v}" for k, v in value.items()
|
|
)
|
|
else:
|
|
# Ensure any non-iterable value is a string
|
|
config_dict[key] = str(value)
|
|
|
|
return formatter.print_table(
|
|
f"Agent: {self.agent_name} Configuration", config_dict
|
|
)
|
|
|
|
def talk_to(
|
|
self, agent: Any, task: str, img: str = None, *args, **kwargs
|
|
) -> Any:
|
|
"""
|
|
Talk to another agent.
|
|
"""
|
|
# return agent.run(f"{agent.agent_name}: {task}", img, *args, **kwargs)
|
|
output = self.run(
|
|
f"{self.agent_name}: {task}", img, *args, **kwargs
|
|
)
|
|
|
|
return agent.run(
|
|
task=f"From {self.agent_name}: Message: {output}",
|
|
img=img,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
def talk_to_multiple_agents(
|
|
self,
|
|
agents: List[Union[Any, Callable]],
|
|
task: str,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Talk to multiple agents.
|
|
"""
|
|
# o# Use the existing executor from self.executor or create a new one if needed
|
|
with ThreadPoolExecutor() as executor:
|
|
# Create futures for each agent conversation
|
|
futures = [
|
|
executor.submit(
|
|
self.talk_to, agent, task, *args, **kwargs
|
|
)
|
|
for agent in agents
|
|
]
|
|
|
|
# Wait for all futures to complete and collect results
|
|
outputs = []
|
|
for future in futures:
|
|
try:
|
|
result = future.result()
|
|
outputs.append(result)
|
|
except Exception as e:
|
|
logger.error(f"Error in agent communication: {e}")
|
|
outputs.append(
|
|
None
|
|
) # or handle error case as needed
|
|
|
|
return outputs
|
|
|
|
def get_agent_role(self) -> str:
|
|
"""
|
|
Get the role of the agent.
|
|
"""
|
|
return self.role
|
|
|
|
def pretty_print(self, response: str, loop_count: int):
|
|
if self.no_print is False:
|
|
if self.streaming_on is True:
|
|
# self.stream_response(response)
|
|
formatter.print_panel_token_by_token(
|
|
f"{self.agent_name}: {response}",
|
|
title=f"Agent Name: {self.agent_name} [Max Loops: {loop_count}]",
|
|
)
|
|
elif self.no_print is True:
|
|
pass
|
|
else:
|
|
# logger.info(f"Response: {response}")
|
|
formatter.print_panel(
|
|
f"{self.agent_name}: {response}",
|
|
f"Agent Name {self.agent_name} [Max Loops: {loop_count} ]",
|
|
)
|
|
|
|
def parse_llm_output(self, response: Any):
|
|
"""Parse and standardize the output from the LLM.
|
|
|
|
Args:
|
|
response (Any): The response from the LLM in any format
|
|
|
|
Returns:
|
|
str: Standardized string output
|
|
|
|
Raises:
|
|
ValueError: If the response format is unexpected and can't be handled
|
|
"""
|
|
try:
|
|
|
|
if isinstance(response, dict):
|
|
if "choices" in response:
|
|
return response["choices"][0]["message"][
|
|
"content"
|
|
]
|
|
return json.dumps(
|
|
response
|
|
) # Convert other dicts to string
|
|
|
|
elif isinstance(response, BaseModel):
|
|
response = response.model_dump()
|
|
|
|
# Handle List[BaseModel] responses
|
|
elif (
|
|
isinstance(response, list)
|
|
and response
|
|
and isinstance(response[0], BaseModel)
|
|
):
|
|
return [item.model_dump() for item in response]
|
|
|
|
return response
|
|
|
|
except AgentChatCompletionResponse as e:
|
|
logger.error(f"Error parsing LLM output: {e}")
|
|
raise ValueError(
|
|
f"Failed to parse LLM output: {type(response)}"
|
|
)
|
|
|
|
def sentiment_and_evaluator(self, response: str):
|
|
if self.evaluator:
|
|
logger.info("Evaluating response...")
|
|
|
|
evaluated_response = self.evaluator(response)
|
|
print("Evaluated Response:" f" {evaluated_response}")
|
|
self.short_memory.add(
|
|
role="Evaluator",
|
|
content=evaluated_response,
|
|
)
|
|
|
|
# Sentiment analysis
|
|
if self.sentiment_analyzer:
|
|
logger.info("Analyzing sentiment...")
|
|
self.sentiment_analysis_handler(response)
|
|
|
|
def output_cleaner_op(self, response: str):
|
|
# Apply the cleaner function to the response
|
|
if self.output_cleaner is not None:
|
|
logger.info("Applying output cleaner to response.")
|
|
|
|
response = self.output_cleaner(response)
|
|
|
|
logger.info(f"Response after output cleaner: {response}")
|
|
|
|
self.short_memory.add(
|
|
role="Output Cleaner",
|
|
content=response,
|
|
)
|
|
|
|
def mcp_tool_handling(
|
|
self, response: any, current_loop: Optional[int] = 0
|
|
):
|
|
try:
|
|
|
|
if exists(self.mcp_url):
|
|
# Execute the tool call
|
|
tool_response = asyncio.run(
|
|
execute_tool_call_simple(
|
|
response=response,
|
|
server_path=self.mcp_url,
|
|
)
|
|
)
|
|
elif exists(self.mcp_config):
|
|
# Execute the tool call
|
|
tool_response = asyncio.run(
|
|
execute_tool_call_simple(
|
|
response=response,
|
|
connection=self.mcp_config,
|
|
)
|
|
)
|
|
elif exists(self.mcp_urls):
|
|
tool_response = execute_multiple_tools_on_multiple_mcp_servers_sync(
|
|
responses=response,
|
|
urls=self.mcp_urls,
|
|
output_type="json",
|
|
)
|
|
# tool_response = format_data_structure(tool_response)
|
|
|
|
# print(f"Multiple MCP Tool Response: {tool_response}")
|
|
else:
|
|
raise AgentMCPConnectionError(
|
|
"mcp_url must be either a string URL or MCPConnection object"
|
|
)
|
|
|
|
# Get the text content from the tool response
|
|
# execute_tool_call_simple returns a string directly, not an object with content attribute
|
|
text_content = f"MCP Tool Response: \n\n {json.dumps(tool_response, indent=2)}"
|
|
|
|
if self.no_print is False:
|
|
formatter.print_panel(
|
|
text_content,
|
|
"MCP Tool Response: 🛠️",
|
|
style="green",
|
|
)
|
|
|
|
# Add to the memory
|
|
self.short_memory.add(
|
|
role="Tool Executor",
|
|
content=text_content,
|
|
)
|
|
|
|
# Create a temporary LLM instance without tools for the follow-up call
|
|
try:
|
|
temp_llm = self.temp_llm_instance_for_tool_summary()
|
|
|
|
summary = temp_llm.run(
|
|
task=self.short_memory.get_str()
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error calling LLM after MCP tool execution: {e}"
|
|
)
|
|
# Fallback: provide a default summary
|
|
summary = "I successfully executed the MCP tool and retrieved the information above."
|
|
|
|
self.pretty_print(summary, loop_count=current_loop)
|
|
|
|
# Add to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=summary
|
|
)
|
|
except AgentMCPToolError as e:
|
|
logger.error(f"Error in MCP tool: {e}")
|
|
raise e
|
|
|
|
def temp_llm_instance_for_tool_summary(self):
|
|
return LiteLLM(
|
|
model_name=self.model_name,
|
|
temperature=self.temperature,
|
|
max_tokens=self.max_tokens,
|
|
system_prompt=self.system_prompt,
|
|
stream=self.streaming_on,
|
|
tools_list_dictionary=None,
|
|
parallel_tool_calls=False,
|
|
base_url=self.llm_base_url,
|
|
api_key=self.llm_api_key,
|
|
)
|
|
|
|
def execute_tools(self, response: any, loop_count: int):
|
|
# Handle None response gracefully
|
|
if response is None:
|
|
logger.warning(
|
|
f"Cannot execute tools with None response in loop {loop_count}. "
|
|
"This may indicate the LLM did not return a valid response."
|
|
)
|
|
return
|
|
|
|
output = (
|
|
self.tool_struct.execute_function_calls_from_api_response(
|
|
response
|
|
)
|
|
)
|
|
|
|
self.short_memory.add(
|
|
role="Tool Executor",
|
|
content=format_data_structure(output),
|
|
)
|
|
|
|
self.pretty_print(
|
|
f"{format_data_structure(output)}",
|
|
loop_count,
|
|
)
|
|
|
|
# Now run the LLM again without tools - create a temporary LLM instance
|
|
# instead of modifying the cached one
|
|
# Create a temporary LLM instance without tools for the follow-up call
|
|
if self.tool_call_summary is True:
|
|
temp_llm = self.temp_llm_instance_for_tool_summary()
|
|
|
|
tool_response = temp_llm.run(
|
|
f"""
|
|
Please analyze and summarize the following tool execution output in a clear and concise way.
|
|
Focus on the key information and insights that would be most relevant to the user's original request.
|
|
If there are any errors or issues, highlight them prominently.
|
|
|
|
Tool Output:
|
|
{output}
|
|
"""
|
|
)
|
|
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=tool_response,
|
|
)
|
|
|
|
self.pretty_print(
|
|
f"{tool_response}",
|
|
loop_count,
|
|
)
|
|
|
|
def list_output_types(self):
|
|
return OutputType
|
|
|
|
def run_multiple_images(
|
|
self, task: str, imgs: List[str], *args, **kwargs
|
|
):
|
|
"""
|
|
Run the agent with multiple images.
|
|
|
|
Args:
|
|
task (str): The task to be performed on each image.
|
|
imgs (List[str]): List of image paths or URLs to process.
|
|
*args: Additional positional arguments to pass to the agent's run method.
|
|
**kwargs: Additional keyword arguments to pass to the agent's run method.
|
|
|
|
Returns:
|
|
List[Any]: A list of outputs generated for each image in the same order as the input images.
|
|
|
|
Examples:
|
|
>>> agent = Agent()
|
|
>>> outputs = agent.run_multiple_images(
|
|
... task="Describe what you see in this image",
|
|
... imgs=["image1.jpg", "image2.png", "image3.jpeg"]
|
|
... )
|
|
>>> print(f"Processed {len(outputs)} images")
|
|
Processed 3 images
|
|
|
|
Raises:
|
|
Exception: If an error occurs while processing any of the images.
|
|
"""
|
|
outputs = []
|
|
for img in imgs:
|
|
output = self.run(task=task, img=img, *args, **kwargs)
|
|
outputs.append(output)
|
|
|
|
# Combine the outputs into a single string
|
|
if self.summarize_multiple_images is True:
|
|
output = "\n".join(outputs)
|
|
|
|
prompt = f"""
|
|
You have already analyzed {len(outputs)} images and provided detailed descriptions for each one.
|
|
Now, based on your previous analysis of these images, create a comprehensive report that:
|
|
|
|
1. Synthesizes the key findings across all images
|
|
2. Identifies common themes, patterns, or relationships between the images
|
|
3. Provides an overall summary that captures the most important insights
|
|
4. Highlights any notable differences or contrasts between the images
|
|
|
|
Here are your previous analyses of the images:
|
|
{output}
|
|
|
|
Please create a well-structured report that brings together your insights from all {len(outputs)} images.
|
|
"""
|
|
|
|
outputs = self.run(task=prompt, *args, **kwargs)
|
|
|
|
return outputs
|