You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
2.6 KiB
92 lines
2.6 KiB
from swarms.models.openai_function_caller import OpenAIFunctionCaller
|
|
from pydantic import BaseModel, Field
|
|
from swarms.tools.prebuilt.code_executor import CodeExecutor
|
|
from swarms.structs.concat import concat_strings
|
|
|
|
|
|
# Pydantic is a data validation library that provides data validation and parsing using Python type hints.
|
|
# It is used here to define the data structure for making API calls to retrieve weather information.
|
|
class CodeSpec(BaseModel):
|
|
summary: str = Field(
|
|
...,
|
|
description="The summary of the code",
|
|
)
|
|
algorithmic_pseudocode: str = Field(
|
|
...,
|
|
description="The pseudocode of the code",
|
|
)
|
|
code: str = Field(
|
|
...,
|
|
description="The code for the algorithm.",
|
|
)
|
|
|
|
|
|
def clean_model_code(model_code_str: str) -> str:
|
|
"""
|
|
Cleans up the generated model code string.
|
|
|
|
Args:
|
|
model_code_str (str): The raw model code as a string.
|
|
|
|
Returns:
|
|
str: The cleaned-up model code.
|
|
"""
|
|
cleaned_code = model_code_str.replace("\\n", "\n").replace("\\'", "'")
|
|
return cleaned_code.strip()
|
|
|
|
|
|
# The WeatherAPI class is a Pydantic BaseModel that represents the data structure
|
|
# for making API calls to retrieve weather information. It has two attributes: city and date.
|
|
|
|
# Example usage:
|
|
# Initialize the function caller
|
|
model = OpenAIFunctionCaller(
|
|
system_prompt="You're the code interpreter agent, your purpose is to generate code given a task and provide a summary, pseudocode, and code for the algorithm.",
|
|
max_tokens=3400,
|
|
temperature=0.5,
|
|
base_model=CodeSpec,
|
|
parallel_tool_calls=False,
|
|
)
|
|
|
|
|
|
def run_model_and_generate_code(max_loops: int = 2):
|
|
question = "What is the task for the code interpreter agent?"
|
|
task = input(question)
|
|
responses = []
|
|
responses.append(question)
|
|
responses.append(task)
|
|
|
|
for i in range(max_loops):
|
|
task = concat_strings(task)
|
|
|
|
out = model.run(task)
|
|
summary = out["summary"]
|
|
print("\nSummary: ", summary)
|
|
pseudocode = out["algorithmic_pseudocode"]
|
|
code = clean_model_code(out["code"])
|
|
|
|
output = f"{summary}\n\n{pseudocode}\n\n{code}"
|
|
responses.append(output)
|
|
|
|
# Code Executor
|
|
executor = CodeExecutor()
|
|
|
|
# Execute the code
|
|
result = executor.execute(code)
|
|
|
|
if "error" in result:
|
|
print(f"Error: {result}")
|
|
break
|
|
|
|
print("\nCode Output: ", result)
|
|
|
|
task = input(
|
|
"\nEnter the next task for the code interpreter agent (or 'exit' to stop): "
|
|
)
|
|
responses.append(task)
|
|
|
|
return responses
|
|
|
|
|
|
run_model_and_generate_code()
|