You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/workers/worker_agent_ultra.py

172 lines
6.4 KiB

import logging
import os
from typing import Dict, List
from langchain.memory.chat_message_histories import FileChatMessageHistory
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
from typing import Dict, List
from langchain.memory.chat_message_histories import FileChatMessageHistory
from swarms.agents.tools.main import (
BaseToolSet,
CodeEditor,
ExitConversation,
RequestsGet,
Terminal,
)
from swarms.utils.main import BaseHandler, CsvToDataframe, FileType
class WorkerUltraNode:
"""Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
def __init__(self, llm, toolsets, vectorstore):
if not llm or not toolsets or not vectorstore:
logging.error("llm, toolsets, and vectorstore cannot be None.")
raise ValueError("llm, toolsets, and vectorstore cannot be None.")
self.llm = llm
self.toolsets = toolsets
self.vectorstore = vectorstore
self.agent = None
def create_agent(self, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
logging.info("Creating agent in WorkerNode")
try:
tools_list = list(self.toolsets.values())
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
tools=tools_list, # Pass the dictionary instead of the list
llm=self.llm,
memory=self.vectorstore.as_retriever(search_kwargs=search_kwargs),
human_in_the_loop=human_in_the_loop,
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
)
self.agent.chain.verbose = verbose
except Exception as e:
logging.error(f"Error while creating agent: {str(e)}")
raise e
def add_toolset(self, toolset: BaseToolSet):
if not isinstance(toolset, BaseToolSet):
logging.error("Toolset must be an instance of BaseToolSet.")
raise TypeError("Toolset must be an instance of BaseToolSet.")
self.toolsets.append(toolset)
def run(self, prompt: str) -> str:
if not isinstance(prompt, str):
logging.error("Prompt must be a string.")
raise TypeError("Prompt must be a string.")
if not prompt:
logging.error("Prompt is empty.")
raise ValueError("Prompt is empty.")
try:
self.agent.run([f"{prompt}"])
return "Task completed by WorkerNode"
except Exception as e:
logging.error(f"While running the agent: {str(e)}")
raise e
class WorkerUltraNodeInitializer:
def __init__(self, openai_api_key):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("openai_api_key cannot be None")
self.openai_api_key = openai_api_key
def initialize_llm(self, llm_class, temperature=0.5):
if not llm_class:
logging.error("llm_class cannot be none")
raise ValueError("llm_class cannot be None")
try:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
raise
def initialize_toolsets(self):
try:
toolsets: List[BaseToolSet] = [
Terminal(),
CodeEditor(),
RequestsGet(),
ExitConversation(),
]
handlers: Dict[FileType, BaseHandler] = {FileType.DATAFRAME: CsvToDataframe()}
if os.environ.get("USE_GPU", False):
import torch
from swarms.agents.tools.main import (
ImageCaptioning,
ImageEditing,
InstructPix2Pix,
Text2Image,
VisualQuestionAnswering,
)
if torch.cuda.is_available():
toolsets.extend(
[
Text2Image("cuda"),
ImageEditing("cuda"),
InstructPix2Pix("cuda"),
VisualQuestionAnswering("cuda"),
]
)
handlers[FileType.IMAGE] = ImageCaptioning("cuda")
return toolsets
except Exception as e:
logging.error(f"Failed to initialize toolsets: {e}")
def initialize_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise
def create_worker_node(self, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
if not llm_class:
logging.error("llm_class cannot be None.")
raise ValueError("llm_class cannot be None.")
try:
worker_toolsets = self.initialize_toolsets()
vectorstore = self.initialize_vectorstore()
worker_node = WorkerUltraNode(llm=self.initialize_llm(llm_class), toolsets=worker_toolsets, vectorstore=vectorstore)
worker_node.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose)
return worker_node
except Exception as e:
logging.error(f"Failed to create worker node: {e}")
raise
def worker_ultra_node(openai_api_key):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("OpenAI API key is required")
try:
initializer = WorkerUltraNodeInitializer(openai_api_key)
worker_node = initializer.create_worker_node()
return worker_node
except Exception as e:
logging.error(f"An error occurred in worker_node: {e}")
raise