You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/examples/agents/tools/function_calling/api_requester_agent.py

241 lines
8.4 KiB

import logging
from typing import Any, Dict, Optional
import requests
from pydantic import BaseModel, Field
from swarms import OpenAIFunctionCaller, Conversation
from loguru import logger
import os
class APITaskSchema(BaseModel):
plan: str = Field(
...,
description="Plan out the API request to be executed, contemplate the endpoint, method, headers, body, and params.",
)
url: str = Field(
..., description="The API endpoint to send the request to."
)
method: str = Field(
...,
description="HTTP method to use for the request (e.g., GET, POST).",
)
headers: Optional[Dict[str, str]] = Field(
..., description="Optional headers to include in the request."
)
body: Optional[Dict[str, Any]] = Field(
..., description="Optional body content for POST requests."
)
params: Optional[Dict[str, Any]] = Field(
..., description="Optional query parameters for the request."
)
class APIRequestAgent:
"""
An agent that sends API requests based on user input.
Args:
name (str, optional): The name of the agent. Defaults to "APIRequestAgent".
description (str, optional): The description of the agent. Defaults to "An agent that sends API requests based on user input.".
schema (BaseModel, optional): The schema for the API task. Defaults to APITaskSchema.
temperature (int, optional): The temperature for the language model. Defaults to 0.5.
system_prompt (str, optional): The system prompt for the language model. Defaults to "You are an API request manager. Create and execute requests based on the user's needs.".
max_tokens (int, optional): The maximum number of tokens for the language model. Defaults to 4000.
full_agent_history (str, optional): The full agent history. Defaults to None.
max_loops (int, optional): The maximum number of loops for the agent. Defaults to 10.
Attributes:
name (str): The name of the agent.
description (str): The description of the agent.
schema (BaseModel): The schema for the API task.
session (requests.Session): The session for connection pooling.
system_prompt (str): The system prompt for the language model.
max_tokens (int): The maximum number of tokens for the language model.
full_agent_history (str): The full agent history.
max_loops (int): The maximum number of loops for the agent.
llm (OpenAIFunctionCaller): The function caller for the language model.
conversation (Conversation): The conversation object.
"""
def __init__(
self,
name: str = "APIRequestAgent",
description: str = "An agent that sends API requests based on user input.",
schema: BaseModel = APITaskSchema,
temperature: int = 0.5,
system_prompt: str = "You are an API request manager. Create and execute requests based on the user's needs.",
max_tokens: int = 4000,
full_agent_history: str = None,
max_loops: int = 10,
*args,
**kwargs,
):
# super().__init__(name=name, *args, **kwargs)
self.name = name
self.description = description
self.schema = schema
self.session = (
requests.Session()
) # Optional: Use a session for connection pooling.
self.system_prompt = system_prompt
self.max_tokens = max_tokens
self.full_agent_history = full_agent_history
self.max_loops = max_loops
# Initialize the function caller (LLM) with the schema
self.llm = OpenAIFunctionCaller(
system_prompt=system_prompt,
max_tokens=max_tokens,
temperature=temperature,
base_model=APITaskSchema,
parallel_tool_calls=False,
openai_api_key=os.getenv("OPENAI_API_KEY"),
)
# Conversation
self.conversation = Conversation(
time_enabled=True,
system_prompt=system_prompt,
)
# Full Agent history
self.full_agent_history = (
self.conversation.return_history_as_string()
)
def parse_response(
self, response: requests.Response
) -> Dict[str, Any]:
"""
Parses the API response and returns the content.
Args:
response (requests.Response): The API response to parse.
Returns:
Dict[str, Any]: The parsed response content.
"""
try:
logger.info(f"Response status code: {response.status_code}")
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
logging.error(f"HTTPError: {e}")
raise
except ValueError as e:
logging.error(f"Failed to parse JSON: {e}")
raise
def execute_request(self, task: APITaskSchema) -> Dict[str, Any]:
"""
Executes the API request based on the given task schema.
Args:
task (APITaskSchema): The task schema containing request details.
Returns:
Dict[str, Any]: The API response.
"""
base_url = task.url
url = f"{base_url}/{task.endpoint}"
method = task.method.upper()
logger.info(f"Executing request: {method} {url}")
try:
if method == "GET":
response = self.session.get(
url, headers=task.headers, params=task.params
)
elif method == "POST":
response = self.session.post(
url,
headers=task.headers,
json=task.body,
params=task.params,
)
elif method == "PUT":
response = self.session.put(
url,
headers=task.headers,
json=task.body,
params=task.params,
)
elif method == "DELETE":
response = self.session.delete(
url, headers=task.headers, params=task.params
)
elif method == "PATCH":
response = self.session.patch(
url,
headers=task.headers,
json=task.body,
params=task.params,
)
else:
raise ValueError(f"Unsupported HTTP method: {method}")
logging.info(f"Executed {method} request to {url}")
return self.parse_response(response)
except requests.exceptions.RequestException as e:
logging.error(f"RequestException: {e}")
raise
def execute_api_request(self, task: APITaskSchema) -> Dict[str, Any]:
"""
Executes a single step: sends the request and processes the response.
Args:
task (APITaskSchema): The task schema containing request details.
Returns:
Dict[str, Any]: The processed response from the API.
"""
logger.info(f"Executing API request based on task: {task}")
response = self.execute_request(task)
response = str(response)
# Log the response in the conversation
self.conversation.add(role="API", content=response)
return response
def run(self, task: str) -> Any:
"""
Runs the agent by processing a task string, and executing the requests.
Args:
task (str): The task to be processed by the LLM and executed by the agent.
Returns:
Any: The result of the task processed by the LLM.
"""
logger.info(f"Running agent with task: {task}")
output = self.llm.run(task)
# Log the output in the conversation
print(output)
print(type(output))
self.conversation.add(role=self.name, content=output)
# Convert dict -> APITaskSchema
output = APITaskSchema(**output)
logger.info(f"Executing request based on task: {output}")
return self.execute_api_request(output)
# Model
agent = APIRequestAgent(
name="APIRequestAgent",
description="An agent that sends API requests based on user input.",
schema=APITaskSchema,
system_prompt="You are an API request manager. Create and execute requests based on the user's needs.",
)
agent.run("Send an API request to an open source API")
print(agent.full_agent_history)