You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/self_moa_seq.py

398 lines
13 KiB

from datetime import datetime
from functools import wraps
from typing import Any, Dict, List, Optional
from loguru import logger
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from swarms.structs.agent import Agent
def retry_with_instance_config(func):
"""
Decorator that applies retry configuration using instance variables.
This allows the retry decorator to access instance configuration.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
# Create retry decorator with instance configuration
retry_decorator = retry(
stop=stop_after_attempt(self.max_retries + 1),
wait=wait_exponential(
multiplier=self.retry_backoff_multiplier,
min=self.retry_delay,
max=self.retry_max_delay,
),
retry=retry_if_exception_type((Exception,)),
before_sleep=before_sleep_log(logger, "WARNING"),
)
# Apply the retry decorator to the function
retried_func = retry_decorator(func)
return retried_func(self, *args, **kwargs)
return wrapper
class SelfMoASeq:
"""
Self-MoA-Seq: Sequential Self-Mixture of Agents
An ensemble method that generates multiple outputs from a single
high-performing model and aggregates them sequentially using a
sliding window approach. This addresses context length constraints
while maintaining the effectiveness of in-model diversity.
Architecture:
- Phase 1: Generate initial samples from the proposer model
- Phase 2: Aggregate outputs using sliding window with synthesized bias
- Phase 3: Iterate until all samples are processed
"""
def __init__(
self,
name: str = "SelfMoASeq",
description: str = "Self-MoA-Seq: Sequential Self-Mixture of Agents",
model_name: str = "gpt-4o-mini",
temperature: float = 0.7,
window_size: int = 6,
reserved_slots: int = 3,
max_iterations: int = 10,
max_tokens: int = 2000,
num_samples: int = 30,
enable_logging: bool = True,
log_level: str = "INFO",
verbose: bool = True,
proposer_model_name: Optional[str] = None,
aggregator_model_name: Optional[str] = None,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff_multiplier: float = 2.0,
retry_max_delay: float = 60.0,
):
# Validate parameters
if window_size < 2:
raise ValueError("window_size must be at least 2")
if reserved_slots >= window_size:
raise ValueError(
"reserved_slots must be less than window_size"
)
if not 0 <= temperature <= 2:
raise ValueError("temperature must be between 0 and 2")
if max_iterations < 1:
raise ValueError("max_iterations must be at least 1")
if num_samples < 2:
raise ValueError("num_samples must be at least 2")
if max_retries < 0:
raise ValueError("max_retries must be non-negative")
if retry_delay < 0:
raise ValueError("retry_delay must be non-negative")
if retry_backoff_multiplier < 1:
raise ValueError("retry_backoff_multiplier must be >= 1")
if retry_max_delay < retry_delay:
raise ValueError("retry_max_delay must be >= retry_delay")
# Store parameters
self.model_name = model_name
self.temperature = temperature
self.window_size = window_size
self.reserved_slots = reserved_slots
self.max_iterations = max_iterations
self.max_tokens = max_tokens
self.num_samples = num_samples
self.enable_logging = enable_logging
self.log_level = log_level
self.verbose = verbose
# Retry configuration
self.max_retries = max_retries
self.retry_delay = retry_delay
self.retry_backoff_multiplier = retry_backoff_multiplier
self.retry_max_delay = retry_max_delay
# Allow model overrides
proposer_model = proposer_model_name or self.model_name
aggregator_model = aggregator_model_name or self.model_name
# Setup logging
logger.info(
f"Initializing Self-MoA-Seq with model: {self.model_name}"
)
# Initialize proposer agent (generates multiple samples)
self.proposer = Agent(
agent_name="SelfMoASeq-Proposer",
system_prompt=(
"You are a sample generator. Generate diverse, high-quality responses "
"to the given task. Vary your approach while maintaining quality."
),
model_name=proposer_model,
temperature=self.temperature,
max_loops=1,
verbose=self.verbose,
)
# Initialize aggregator agent (synthesizes outputs)
self.aggregator = Agent(
agent_name="SelfMoASeq-Aggregator",
system_prompt=(
"You are an expert synthesizer. Analyze the provided responses and "
"synthesize them into a single, high-quality output. Consider the "
"strengths of each response and combine them effectively. Pay special "
"attention to any highlighted best response, as it provides high-quality guidance."
),
model_name=aggregator_model,
temperature=0.0, # Deterministic aggregation
max_loops=1,
verbose=self.verbose,
)
# Metrics tracking
self.metrics: Dict[str, Any] = {
"total_samples_generated": 0,
"total_aggregations": 0,
"total_tokens_used": 0,
"execution_time_seconds": 0,
}
logger.info("Self-MoA-Seq initialization complete")
@retry_with_instance_config
def _generate_samples(
self, task: str, num_samples: int
) -> List[str]:
"""
Generate multiple samples from the proposer model.
Args:
task: The task description
num_samples: Number of samples to generate
Returns:
List of generated samples
"""
logger.info(f"Generating {num_samples} samples for task")
samples = []
try:
for i in range(num_samples):
logger.debug(f"Generating sample {i+1}/{num_samples}")
sample = self.proposer.run(task)
samples.append(sample)
self.metrics["total_samples_generated"] += 1
logger.success(
f"Successfully generated {len(samples)} samples"
)
return samples
except Exception as e:
logger.error(f"Error during sample generation: {str(e)}")
raise
def _format_aggregation_prompt(
self,
task: str,
samples: List[str],
best_so_far: Optional[str] = None,
) -> str:
"""
Format the aggregation prompt with sliding window.
Args:
task: Original task
samples: List of samples to aggregate
best_so_far: Previously synthesized best output
Returns:
Formatted aggregation prompt
"""
prompt = f"Original Task:\n{task}\n\n"
if best_so_far:
prompt += f"Current Best Response (synthesized from previous iterations):\n{best_so_far}\n\n"
prompt += "Candidate Responses to Synthesize:\n"
for i, sample in enumerate(samples, 1):
prompt += f"\n[Response {i}]:\n{sample}\n"
prompt += (
"\nProvide a comprehensive synthesis that combines the strengths of "
"all responses while maintaining coherence and quality."
)
return prompt
@retry_with_instance_config
def _aggregate_window(
self,
task: str,
window_samples: List[str],
best_so_far: Optional[str] = None,
) -> str:
"""
Aggregate a window of samples.
Args:
task: Original task
window_samples: Samples in current window
best_so_far: Best aggregation so far
Returns:
Synthesized output
"""
logger.debug(
f"Aggregating window of {len(window_samples)} samples"
)
try:
prompt = self._format_aggregation_prompt(
task,
window_samples,
best_so_far,
)
aggregated = self.aggregator.run(prompt)
self.metrics["total_aggregations"] += 1
logger.debug("Window aggregation complete")
return aggregated
except Exception as e:
logger.error(f"Error during window aggregation: {str(e)}")
raise
@retry_with_instance_config
def run(
self,
task: str,
) -> Dict[str, Any]:
"""
Execute Self-MoA-Seq on the given task.
This method implements the sequential aggregation algorithm:
1. Generate num_samples from the proposer model
2. Use sliding window to aggregate in chunks
3. Progressively synthesize outputs, biasing aggregator toward best
4. Return final synthesized output
Args:
task: The task to process
Returns:
Dictionary containing:
- final_output: The best synthesized response
- all_samples: List of generated samples
- aggregation_steps: Number of aggregation iterations
- metrics: Performance metrics
"""
logger.info(
f"Starting Self-MoA-Seq run with {self.num_samples} samples"
)
start_time = datetime.now()
try:
# Validate input
if not task or not isinstance(task, str):
raise ValueError("task must be a non-empty string")
# Phase 1: Generate samples
logger.info("Phase 1: Generating initial samples")
samples = self._generate_samples(task, self.num_samples)
# Phase 2: Sequential aggregation with sliding window
logger.info("Phase 2: Sequential aggregation")
best_output = samples[0]
aggregation_step = 0
# Process samples in windows
remaining_samples = samples[1:]
while remaining_samples:
aggregation_step += 1
logger.info(
f"Aggregation iteration {aggregation_step}, "
f"remaining samples: {len(remaining_samples)}"
)
# Create window: reserved slots + new samples
window_size = min(
self.window_size - self.reserved_slots,
len(remaining_samples),
)
current_window = remaining_samples[:window_size]
remaining_samples = remaining_samples[window_size:]
# Aggregate with bias toward best output
window_with_best = [best_output] + current_window
best_output = self._aggregate_window(
task,
window_with_best,
best_output,
)
if aggregation_step >= self.max_iterations:
logger.warning(
f"Reached max aggregation iterations ({self.max_iterations})"
)
break
# Calculate metrics
elapsed = (datetime.now() - start_time).total_seconds()
self.metrics["execution_time_seconds"] = elapsed
result = {
"final_output": best_output,
"all_samples": samples,
"aggregation_steps": aggregation_step,
"metrics": self.metrics.copy(),
"task": task,
"timestamp": datetime.now().isoformat(),
}
logger.success(
f"Self-MoA-Seq completed in {elapsed:.2f}s "
f"with {aggregation_step} aggregation iterations"
)
if self.verbose:
self._log_summary(result)
return result
except Exception as e:
logger.error(f"Fatal error in Self-MoA-Seq.run: {str(e)}")
raise
def _log_summary(self, result: Dict[str, Any]) -> None:
"""Log execution summary."""
logger.info("=" * 60)
logger.info("Self-MoA-Seq Execution Summary")
logger.info("=" * 60)
logger.info(
f"Total samples generated: {self.metrics['total_samples_generated']}"
)
logger.info(
f"Aggregation iterations: {result['aggregation_steps']}"
)
logger.info(
f"Execution time: {self.metrics['execution_time_seconds']:.2f}s"
)
logger.info(
f"Final output length: {len(result['final_output'])} chars"
)
logger.info("=" * 60)
def get_metrics(self) -> Dict[str, Any]:
"""Get current performance metrics."""
return self.metrics.copy()