You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/spreadsheet_swarm.py

303 lines
9.7 KiB

import asyncio
import csv
import datetime
import os
import uuid
from typing import List, Union
import aiofiles
from pydantic import BaseModel, Field
from swarms.structs.agent import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.utils.file_processing import create_file_in_folder
from swarms.telemetry.capture_sys_data import log_agent_data
from swarms.utils.loguru_logger import initialize_logger
logger = initialize_logger(log_folder="spreadsheet_swarm")
time = datetime.datetime.now().isoformat()
uuid_hex = uuid.uuid4().hex
# --------------- NEW CHANGE START ---------------
# Format time variable to be compatible across operating systems
formatted_time = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# Create the save file path with the formatted time and UUID hex
self.save_file_path = f"spreadsheet_swarm_{formatted_time}_run_id_{uuid_hex}.csv"
# --------------- NEW CHANGE END ---------------
class AgentOutput(BaseModel):
agent_name: str
task: str
result: str
timestamp: str
class SwarmRunMetadata(BaseModel):
run_id: str = Field(
default_factory=lambda: f"spreadsheet_swarm_run_{uuid_hex}"
)
name: str
description: str
agents: List[str]
start_time: str = Field(
default_factory=lambda: time,
description="The start time of the swarm run.",
)
end_time: str
tasks_completed: int
outputs: List[AgentOutput]
number_of_agents: int = Field(
...,
description="The number of agents participating in the swarm.",
)
class SpreadSheetSwarm(BaseSwarm):
"""
A swarm that processes tasks concurrently using multiple agents.
Args:
name (str, optional): The name of the swarm. Defaults to "Spreadsheet-Swarm".
description (str, optional): The description of the swarm. Defaults to "A swarm that processes tasks concurrently using multiple agents.".
agents (Union[Agent, List[Agent]], optional): The agents participating in the swarm. Defaults to an empty list.
autosave_on (bool, optional): Whether to enable autosave of swarm metadata. Defaults to True.
save_file_path (str, optional): The file path to save the swarm metadata as a CSV file. Defaults to "spreedsheet_swarm.csv".
max_loops (int, optional): The number of times to repeat the swarm tasks. Defaults to 1.
workspace_dir (str, optional): The directory path of the workspace. Defaults to the value of the "WORKSPACE_DIR" environment variable.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
"""
def __init__(
self,
name: str = "Spreadsheet-Swarm",
description: str = "A swarm that that processes tasks concurrently using multiple agents and saves the metadata to a CSV file.",
agents: Union[Agent, List[Agent]] = [],
autosave_on: bool = True,
save_file_path: str = None,
max_loops: int = 1,
workspace_dir: str = os.getenv("WORKSPACE_DIR"),
*args,
**kwargs,
):
super().__init__(
name=name,
description=description,
agents=agents if isinstance(agents, list) else [agents],
*args,
**kwargs,
)
self.name = name
self.description = description
self.save_file_path = save_file_path
self.autosave_on = autosave_on
self.max_loops = max_loops
self.workspace_dir = workspace_dir
# --------------- NEW CHANGE START ---------------
# The save_file_path now uses the formatted_time and uuid_hex
self.save_file_path = f"spreadsheet_swarm_{formatted_time}_run_id_{uuid_hex}.csv"
# --------------- NEW CHANGE END ---------------
self.metadata = SwarmRunMetadata(
run_id=f"spreadsheet_swarm_run_{time}",
name=name,
description=description,
agents=[agent.name for agent in agents],
start_time=time,
end_time="",
tasks_completed=0,
outputs=[],
number_of_agents=len(agents),
)
self.reliability_check()
def reliability_check(self):
"""
Check the reliability of the swarm.
Raises:
ValueError: If no agents are provided or no save file path is provided.
"""
logger.info("Checking the reliability of the swarm...")
if not self.agents:
raise ValueError("No agents are provided.")
if not self.save_file_path:
raise ValueError("No save file path is provided.")
if not self.max_loops:
raise ValueError("No max loops are provided.")
logger.info("Swarm reliability check passed.")
logger.info("Swarm is ready to run.")
# @profile_func
def run(self, task: str, *args, **kwargs):
"""
Run the swarm with the specified task.
Args:
task (str): The task to be executed by the swarm.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
str: The JSON representation of the swarm metadata.
"""
logger.info(f"Running the swarm with task: {task}")
self.metadata.start_time = time
# Run the asyncio event loop
asyncio.run(self._run_tasks(task, *args, **kwargs))
self.metadata.end_time = time
# Synchronously save metadata
logger.info("Saving metadata to CSV and JSON...")
asyncio.run(self._save_metadata())
if self.autosave_on:
self.data_to_json_file()
print(log_agent_data(self.metadata.model_dump()))
return self.metadata.model_dump_json(indent=4)
async def _run_tasks(self, task: str, *args, **kwargs):
"""
Run the swarm tasks concurrently.
Args:
task (str): The task to be executed by the swarm.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
"""
tasks = []
for _ in range(self.max_loops):
for agent in self.agents:
# Use asyncio.to_thread to run the blocking task in a thread pool
tasks.append(
asyncio.to_thread(
self._run_agent_task,
agent,
task,
*args,
**kwargs,
)
)
# Run all tasks concurrently
results = await asyncio.gather(*tasks)
# Process the results
for result in results:
self._track_output(*result)
def _run_agent_task(self, agent, task, *args, **kwargs):
"""
Run a single agent's task in a separate thread.
Args:
agent: The agent to run the task for.
task (str): The task to be executed by the agent.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
Tuple[str, str, str]: A tuple containing the agent name, task, and result.
"""
result = agent.run(task, *args, **kwargs)
# Assuming agent.run() is a blocking call
return agent.agent_name, task, result
def _track_output(self, agent_name: str, task: str, result: str):
"""
Track the output of a completed task.
Args:
agent_name (str): The name of the agent that completed the task.
task (str): The task that was completed.
result (str): The result of the completed task.
"""
self.metadata.tasks_completed += 1
self.metadata.outputs.append(
AgentOutput(
agent_name=agent_name,
task=task,
result=result,
timestamp=time,
)
)
def export_to_json(self):
"""
Export the swarm metadata to JSON.
Returns:
str: The JSON representation of the swarm metadata.
"""
return self.metadata.model_dump_json(indent=4)
def data_to_json_file(self):
"""
Save the swarm metadata to a JSON file.
"""
out = self.export_to_json()
create_file_in_folder(
folder_path=f"{self.workspace_dir}/Spreedsheet-Swarm-{self.name}/{self.name}",
file_name=f"spreedsheet-swarm-{self.metadata.run_id}_metadata.json",
content=out,
)
async def _save_metadata(self):
"""
Save the swarm metadata to CSV and JSON.
"""
if self.autosave_on:
await self._save_to_csv()
async def _save_to_csv(self):
"""
Save the swarm metadata to a CSV file.
"""
logger.info(
f"Saving swarm metadata to: {self.save_file_path}"
)
run_id = uuid.uuid4()
# Check if file exists before opening it
file_exists = os.path.exists(self.save_file_path)
async with aiofiles.open(
self.save_file_path, mode="a"
) as file:
writer = csv.writer(file)
# Write header if file doesn't exist
if not file_exists:
await writer.writerow(
[
"Run ID",
"Agent Name",
"Task",
"Result",
"Timestamp",
]
)
for output in self.metadata.outputs:
await writer.writerow(
[
str(run_id),
output.agent_name,
output.task,
output.result,
output.timestamp,
]
)