You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/models/mistral.py

158 lines
5.1 KiB

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms.agents.message import Message
class Mistral:
"""
Mistral is an all-new llm
Args:
ai_name (str, optional): Name of the AI. Defaults to "Mistral".
system_prompt (str, optional): System prompt. Defaults to None.
model_name (str, optional): Model name. Defaults to "mistralai/Mistral-7B-v0.1".
device (str, optional): Device to use. Defaults to "cuda".
use_flash_attention (bool, optional): Whether to use flash attention. Defaults to False.
temperature (float, optional): Temperature. Defaults to 1.0.
max_length (int, optional): Max length. Defaults to 100.
do_sample (bool, optional): Whether to sample. Defaults to True.
Usage:
from swarms.models import Mistral
model = Mistral(device="cuda", use_flash_attention=True, temperature=0.7, max_length=200)
task = "My favourite condiment is"
result = model.run(task)
print(result)
"""
def __init__(
self,
ai_name: str = "Node Model Agent",
system_prompt: str = None,
model_name: str = "mistralai/Mistral-7B-v0.1",
device: str = "cuda",
use_flash_attention: bool = False,
temperature: float = 1.0,
max_length: int = 100,
do_sample: bool = True,
):
self.ai_name = ai_name
self.system_prompt = system_prompt
self.model_name = model_name
self.device = device
self.use_flash_attention = use_flash_attention
self.temperature = temperature
self.max_length = max_length
# Check if the specified device is available
if not torch.cuda.is_available() and device == "cuda":
raise ValueError("CUDA is not available. Please choose a different device.")
# Load the model and tokenizer
self.model = None
self.tokenizer = None
self.load_model()
self.history = []
def load_model(self):
try:
self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model.to(self.device)
except Exception as e:
raise ValueError(f"Error loading the Mistral model: {str(e)}")
def run(self, task: str):
"""Run the model on a given task."""
try:
model_inputs = self.tokenizer([task], return_tensors="pt").to(self.device)
generated_ids = self.model.generate(
**model_inputs,
max_length=self.max_length,
do_sample=self.do_sample,
temperature=self.temperature,
max_new_tokens=self.max_length,
)
output_text = self.tokenizer.batch_decode(generated_ids)[0]
return output_text
except Exception as e:
raise ValueError(f"Error running the model: {str(e)}")
def __call__(self, task: str):
"""Run the model on a given task."""
try:
model_inputs = self.tokenizer([task], return_tensors="pt").to(self.device)
generated_ids = self.model.generate(
**model_inputs,
max_length=self.max_length,
do_sample=self.do_sample,
temperature=self.temperature,
max_new_tokens=self.max_length,
)
output_text = self.tokenizer.batch_decode(generated_ids)[0]
return output_text
except Exception as e:
raise ValueError(f"Error running the model: {str(e)}")
def chat(self, msg: str = None, streaming: bool = False):
"""
Run chat
Args:
msg (str, optional): Message to send to the agent. Defaults to None.
language (str, optional): Language to use. Defaults to None.
streaming (bool, optional): Whether to stream the response. Defaults to False.
Returns:
str: Response from the agent
Usage:
--------------
agent = MultiModalAgent()
agent.chat("Hello")
"""
# add users message to the history
self.history.append(Message("User", msg))
# process msg
try:
response = self.agent.run(msg)
# add agent's response to the history
self.history.append(Message("Agent", response))
# if streaming is = True
if streaming:
return self._stream_response(response)
else:
response
except Exception as error:
error_message = f"Error processing message: {str(error)}"
# add error to history
self.history.append(Message("Agent", error_message))
return error_message
def _stream_response(self, response: str = None):
"""
Yield the response token by token (word by word)
Usage:
--------------
for token in _stream_response(response):
print(token)
"""
for token in response.split():
yield token