You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/models/zephyr.py

105 lines
3.1 KiB

"""Zephyr by HF"""
import torch
from transformers import pipeline
class Zephyr:
"""
Zehpyr model from HF
Args:
max_new_tokens(int) = Number of max new tokens
temperature(float) = temperature of the LLM
top_k(float) = top k of the model set to 50
top_p(float) = top_p of the model set to 0.95
Usage:
>>> model = Zephyr()
>>> output = model("Generate hello world in python")
"""
def __init__(
self,
model_name: str = "HuggingFaceH4/zephyr-7b-alpha",
tokenize: bool = False,
add_generation_prompt: bool = True,
system_prompt: str = "You are a friendly chatbot who always responds in the style of a pirate",
max_new_tokens: int = 300,
temperature: float = 0.5,
top_k: float = 50,
top_p: float = 0.95,
do_sample: bool = True,
*args,
**kwargs,
):
super().__init__()
self.model_name = model_name
self.tokenize = tokenize
self.add_generation_prompt = add_generation_prompt
self.system_prompt = system_prompt
self.max_new_tokens = max_new_tokens
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.do_sample = do_sample
self.pipe = pipeline(
"text-generation",
model=self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
self.messages = [
{
"role": "system",
"content": f"{self.system_prompt}\n\nUser:",
},
]
def __call__(self, task: str):
"""Call the model"""
prompt = self.pipe.tokenizer.apply_chat_template(
self.messages,
tokenize=self.tokenize,
add_generation_prompt=self.add_generation_prompt,
)
outputs = self.pipe(prompt) # max_new_token=self.max_new_tokens)
print(outputs[0]["generated_text"])
def chat(self, message: str):
"""
Adds a user message to the conversation and generates a chatbot response.
"""
# Add the user message to the conversation
self.messages.append({"role": "user", "content": message})
# Apply the chat template to format the messages
prompt = self.pipe.tokenizer.apply_chat_template(
self.messages,
tokenize=self.tokenize,
add_generation_prompt=self.add_generation_prompt,
)
# Generate a response
outputs = self.pipe(
prompt,
max_new_tokens=self.max_new_tokens,
do_sample=self.do_sample,
temperature=self.temperature,
top_k=self.top_k,
top_p=self.top_p,
)
# Extract the generated text
generated_text = outputs[0]["generated_text"]
# Optionally, you could also add the chatbot's response to the messages list
# However, the below line should be adjusted to extract the chatbot's response only
# self.messages.append({"role": "bot", "content": generated_text})
return generated_text