You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/server/server.py

294 lines
7.9 KiB

""" Chatbot with RAG Server """
import asyncio
import logging
import os
# import torch
from contextlib import asynccontextmanager
import langchain
import tiktoken
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, JSONResponse
from fastapi.routing import APIRouter
from fastapi.staticfiles import StaticFiles
from huggingface_hub import login
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.base import (
ConversationalRetrievalChain,
)
from langchain.chains.llm import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories.in_memory import (
ChatMessageHistory,
)
from langchain.prompts.prompt import PromptTemplate
from langchain_community.chat_models import ChatOpenAI
# from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from swarms.prompts.chat_prompt import Message
from swarms.prompts.conversational_RAG import (
B_INST,
B_SYS,
CONDENSE_PROMPT_TEMPLATE,
DOCUMENT_PROMPT_TEMPLATE,
E_INST,
E_SYS,
QA_PROMPT_TEMPLATE,
)
from swarms.server.responses import LangchainStreamingResponse
from swarms.server.server_models import ChatRequest, Role
from swarms.server.vector_store import VectorStorage
# Explicitly specify the path to the .env file
# Two folders above the current file's directory
dotenv_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))), ".env"
)
load_dotenv(dotenv_path)
hf_token = os.environ.get(
"HUGGINFACEHUB_API_KEY"
) # Get the Huggingface API Token
uploads = os.environ.get(
"UPLOADS"
) # Directory where user uploads files to be parsed for RAG
model_dir = os.environ.get("MODEL_DIR")
# hugginface.co model (eg. meta-llama/Llama-2-70b-hf)
model_name = os.environ.get("MODEL_NAME")
# Set OpenAI's API key to 'EMPTY' and API base URL to use vLLM's API server
# or set them to OpenAI API key and base URL.
openai_api_key = os.environ.get("OPENAI_API_KEY") or "EMPTY"
openai_api_base = (
os.environ.get("OPENAI_API_BASE") or "http://localhost:8000/v1"
)
env_vars = [
hf_token,
uploads,
model_dir,
model_name,
openai_api_key,
openai_api_base,
]
missing_vars = [var for var in env_vars if not var]
if missing_vars:
print(
f"Error: The following environment variables are not set: {', '.join(missing_vars)}"
)
exit(1)
useMetal = os.environ.get("USE_METAL", "False") == "True"
use_gpu = os.environ.get("USE_GPU", "False") == "True"
print(f"Uploads={uploads}")
print(f"MODEL_DIR={model_dir}")
print(f"MODEL_NAME={model_name}")
print(f"USE_METAL={useMetal}")
print(f"USE_GPU={use_gpu}")
print(f"OPENAI_API_KEY={openai_api_key}")
print(f"OPENAI_API_BASE={openai_api_base}")
# update tiktoken to include the model name (avoids warning message)
tiktoken.model.MODEL_TO_ENCODING.update(
{
model_name: "cl100k_base",
}
)
print("Logging in to huggingface.co...")
login(token=hf_token) # login to huggingface.co
langchain.debug = True
langchain.verbose = True
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Initializes the vector store in a background task."""
print(f"Initializing vector store retrievers for {app.title}.")
asyncio.create_task(vector_store.init_retrievers())
yield
chatbot = FastAPI(title="Chatbot", lifespan=lifespan)
router = APIRouter()
current_dir = os.path.dirname(__file__)
print("current_dir: " + current_dir)
static_dir = os.path.join(current_dir, "static")
print("static_dir: " + static_dir)
chatbot.mount(static_dir, StaticFiles(directory=static_dir), name="static")
chatbot.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
# Create ./uploads folder if it doesn't exist
uploads = uploads or os.path.join(os.getcwd(), "uploads")
if not os.path.exists(uploads):
os.makedirs(uploads)
# Initialize the vector store
vector_store = VectorStorage(directory=uploads, use_gpu=use_gpu)
async def create_chain(
messages: list[Message],
prompt: PromptTemplate = QA_PROMPT_TEMPLATE,
):
"""Creates the RAG Langchain conversational retrieval chain."""
print("Creating chain ...")
llm = ChatOpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
model=model_name,
verbose=True,
streaming=True,
)
# if llm is ALlamaCpp:
# llm.max_tokens = max_tokens_to_gen
# elif llm is AGPT4All:
# llm.n_predict = max_tokens_to_gen
# el
# if llm is AChatOllama:
# llm.max_tokens = max_tokens_to_gen
# if llm is VLLMAsync:
# llm.max_tokens = max_tokens_to_gen
retriever = await vector_store.get_retriever()
chat_memory = ChatMessageHistory()
for message in messages:
if message.role == Role.USER:
chat_memory.add_user_message(message.content)
elif message.role == Role.ASSISTANT:
chat_memory.add_ai_message(message.content)
memory = ConversationBufferMemory(
chat_memory=chat_memory,
memory_key="chat_history",
input_key="question",
output_key="answer",
return_messages=True,
)
question_generator = LLMChain(
llm=llm,
prompt=CONDENSE_PROMPT_TEMPLATE,
memory=memory,
verbose=True,
output_key="answer",
)
stuff_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
output_key="answer",
)
doc_chain = StuffDocumentsChain(
llm_chain=stuff_chain,
document_variable_name="context",
document_prompt=DOCUMENT_PROMPT_TEMPLATE,
verbose=True,
output_key="answer",
memory=memory,
)
return ConversationalRetrievalChain(
combine_docs_chain=doc_chain,
memory=memory,
retriever=retriever,
question_generator=question_generator,
return_generated_question=False,
return_source_documents=True,
output_key="answer",
verbose=True,
)
router = APIRouter()
@router.post(
"/chat",
summary="Chatbot",
description="Chatbot AI Service",
)
async def chat(request: ChatRequest):
""" Handles chatbot chat POST requests """
chain = await create_chain(
messages=request.messages[:-1],
prompt=PromptTemplate.from_template(
f"{B_INST}{B_SYS}{request.prompt.strip()}{E_SYS}{E_INST}"
),
)
json_config = {
"question": request.messages[-1].content,
"chat_history": [
message.content for message in request.messages[:-1]
],
# "callbacks": [
# StreamingStdOutCallbackHandler(),
# TokenStreamingCallbackHandler(output_key="answer"),
# SourceDocumentsStreamingCallbackHandler(),
# ],
}
return LangchainStreamingResponse(
chain,
config=json_config,
)
chatbot.include_router(router, tags=["chat"])
@chatbot.get("/")
def root():
"""Swarms Chatbot API Root"""
return {"message": "Swarms Chatbot API"}
@chatbot.get("/favicon.ico")
def favicon():
""" Returns a favicon """
file_name = "favicon.ico"
file_path = os.path.join(chatbot.root_path, "static", file_name)
return FileResponse(
path=file_path,
headers={
"Content-Disposition": "attachment; filename=" + file_name
},
)
logging.basicConfig(level=logging.ERROR)
@chatbot.exception_handler(HTTPException)
async def http_exception_handler(r: Request, exc: HTTPException):
"""Log and return exception details in response."""
logging.error(
"HTTPException: %s executing request: %s", exc.detail, r.base_url
)
return JSONResponse(
status_code=exc.status_code, content={"detail": exc.detail}
)