You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/playground/demos/education/education.py

57 lines
2.1 KiB

import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat
from swarms.models.stable_diffusion import StableDiffusion
from swarms.structs import Agent, SequentialWorkflow
import swarms.prompts.education as edu_prompts
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABILITY_API_KEY")
# Initialize language model
llm = OpenAIChat(openai_api_key=api_key, temperature=0.5, max_tokens=3000)
# Initialize Stable Diffusion
sd_api = StableDiffusion(api_key=stability_api_key)
# User preferences (can be dynamically set in a real application)
user_preferences = {
"subjects": "Cognitive Architectures",
"learning_style": "Visual",
"challenge_level": "Moderate"
}
# Formatted prompts from user preferences
curriculum_prompt = edu_prompts.CURRICULUM_DESIGN_PROMPT.format(**user_preferences)
interactive_prompt = edu_prompts.INTERACTIVE_LEARNING_PROMPT.format(**user_preferences)
sample_prompt = edu_prompts.SAMPLE_TEST_PROMPT.format(**user_preferences)
image_prompt = edu_prompts.IMAGE_GENERATION_PROMPT.format(**user_preferences)
# Initialize agents for different educational tasks
curriculum_agent = Agent(llm=llm, max_loops=1, sop=curriculum_prompt)
interactive_learning_agent = Agent(llm=llm, max_loops=1, sop=interactive_prompt)
sample_lesson_agent = Agent(llm=llm, max_loops=1, sop=sample_prompt)
# Create Sequential Workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to workflow with personalized prompts
workflow.add(curriculum_agent, "Generate a curriculum")
workflow.add(interactive_learning_agent, "Generate an interactive lesson")
workflow.add(sample_lesson_agent, "Generate a practice test")
# Execute the workflow for text-based tasks
workflow.run()
# Generate an image using Stable Diffusion
image_result = sd_api.run(image_prompt)
# Output results for each task
for task in workflow.tasks:
print(f"Task Description: {task.description}\nResult: {task.result}\n")
# Output image result
print(f"Image Generation Task: Generate an image for the interactive lesson\nResult: {image_result}")