You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/workers/worker_node.py

130 lines
4.8 KiB

import logging
from typing import List, Optional, Union
import faiss
from langchain.agents import Tool
from langchain.chat_models import ChatOpenAI
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain_experimental.autonomous_agents import AutoGPT
from langchain.vectorstores import FAISS
from swarms.agents.tools.autogpt import (
FileChatMessageHistory,
ReadFileTool,
WebpageQATool,
WriteFileTool,
DuckDuckGoSearchRun,
load_qa_with_sources_chain,
process_csv,
web_search,
)
# Constants
ROOT_DIR = "./data/"
# Logging configurations
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class WorkerNodeInitializer:
"""Class to initialize and create autonomous agent instances as worker nodes."""
def __init__(self, openai_api_key: str, worker_name: str = "Swarm Worker AI Assistant", **kwargs):
self.openai_api_key = openai_api_key
self.llm = kwargs.get('llm', ChatOpenAI())
self.tools = kwargs.get('tools', [ReadFileTool(), WriteFileTool()])
self.worker_name = worker_name
self.worker_role = kwargs.get('worker_role', "Assistant")
self.human_in_the_loop = kwargs.get('human_in_the_loop', False)
self.search_kwargs = kwargs.get('search_kwargs', {})
self.chat_history_file = kwargs.get('chat_history_file', "chat_history.txt")
self.create_agent()
def create_agent(self):
logging.info("Creating agent in WorkerNode")
vectorstore = self.initialize_vectorstore()
try:
self.agent = AutoGPT.from_llm_and_tools(
ai_name=self.worker_name,
ai_role=self.worker_role,
tools=self.tools,
llm=self.llm,
memory=vectorstore,
human_in_the_loop=self.human_in_the_loop,
chat_history_memory=FileChatMessageHistory(self.chat_history_file),
)
except Exception as e:
logging.error(f"Error while creating agent: {str(e)}")
raise
def add_tool(self, tool: Optional[Tool] = None):
tool = tool or DuckDuckGoSearchRun()
if not isinstance(tool, Tool):
raise TypeError("Tool must be an instance of Tool.")
self.tools.append(tool)
def initialize_vectorstore(self):
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 8192
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
def run(self, prompt) -> str:
if not prompt or not isinstance(prompt, str):
raise ValueError("Prompt must be a non-empty string.")
try:
self.agent.run([prompt])
return "Task completed by WorkerNode"
except Exception as e:
logging.error(f"Error running the agent: {str(e)}")
raise
class WorkerNode:
"""Main WorkerNode class to execute and manage tasks."""
def __init__(self, openai_api_key: str):
if not openai_api_key:
raise ValueError("OpenAI API key is required")
self.openai_api_key = openai_api_key
self.worker_node_initializer = WorkerNodeInitializer(openai_api_key)
self.name = "Swarm Worker AI Assistant"
self.description = "A worker node that executes tasks"
def create_worker_node(self, **kwargs):
worker_name = kwargs.get('worker_name', "Swarm Worker AI Assistant")
llm_class = kwargs.get('llm_class', ChatOpenAI)
if not llm_class:
raise ValueError("llm_class cannot be None.")
worker_tools = self.initialize_tools(llm_class)
vectorstore = self.worker_node_initializer.initialize_vectorstore()
worker_node = WorkerNodeInitializer(openai_api_key=self.openai_api_key, tools=worker_tools, vectorstore=vectorstore, ai_name=worker_name, **kwargs)
return worker_node
def initialize_llm(self, llm_class, temperature):
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
def initialize_tools(self, llm_class):
llm = self.initialize_llm(llm_class, temperature=1.0) # default value for temperature
tools = [
web_search,
WriteFileTool(root_dir=ROOT_DIR),
ReadFileTool(root_dir=ROOT_DIR),
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
]
return tools
def worker_node(openai_api_key):
"""Factory function to create a worker node."""
if not openai_api_key:
raise ValueError("OpenAI API key is required")
node = WorkerNode(openai_api_key)
return node.create_worker_node()