You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.2 KiB
186 lines
6.2 KiB
import datetime
|
|
import os
|
|
|
|
import streamlit as st
|
|
from dotenv import load_dotenv
|
|
|
|
from swarms.models import OpenAIChat
|
|
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
|
from swarms.models.stable_diffusion import StableDiffusion
|
|
from swarms.structs import Agent
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
stability_api_key = os.getenv("STABLE_API_KEY")
|
|
|
|
# Initialize the models
|
|
vision_api = GPT4VisionAPI(api_key=openai_api_key)
|
|
sd_api = StableDiffusion(api_key=stability_api_key)
|
|
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
|
|
|
|
|
|
class Idea2Image(Agent):
|
|
def __init__(self, llm, vision_api):
|
|
super().__init__(llm=llm)
|
|
self.vision_api = vision_api
|
|
|
|
def run(self, initial_prompt, num_iterations, run_folder):
|
|
current_prompt = initial_prompt
|
|
|
|
for i in range(num_iterations):
|
|
print(f"Iteration {i}: Image generation and analysis")
|
|
|
|
if i == 0:
|
|
current_prompt = self.enrich_prompt(current_prompt)
|
|
print(f"Enriched Prompt: {current_prompt}")
|
|
|
|
img = sd_api.generate_and_move_image(
|
|
current_prompt, i, run_folder
|
|
)
|
|
if not img:
|
|
print("Failed to generate image")
|
|
break
|
|
print(f"Generated image at: {img}")
|
|
|
|
analysis = (
|
|
self.vision_api.run(img, current_prompt)
|
|
if img
|
|
else None
|
|
)
|
|
if analysis:
|
|
current_prompt += (
|
|
". " + analysis[:500]
|
|
) # Ensure the analysis is concise
|
|
print(f"Image Analysis: {analysis}")
|
|
else:
|
|
print(f"Failed to analyze image at: {img}")
|
|
|
|
def enrich_prompt(self, prompt):
|
|
enrichment_task = (
|
|
"Create a concise and effective image generation prompt"
|
|
" within 400 characters or less, based on Stable"
|
|
" Diffusion and Dalle best practices to help it create"
|
|
" much better images. Starting prompt:"
|
|
f" \n\n'{prompt}'\n\nImprove the prompt with any"
|
|
" applicable details or keywords by considering the"
|
|
" following aspects: \n1. Subject details (like actions,"
|
|
" emotions, environment) \n2. Artistic style (such as"
|
|
" surrealism, hyperrealism) \n3. Medium (digital"
|
|
" painting, oil on canvas) \n4. Color themes and"
|
|
" lighting (like warm colors, cinematic lighting) \n5."
|
|
" Composition and framing (close-up, wide-angle) \n6."
|
|
" Additional elements (like a specific type of"
|
|
" background, weather conditions) \n7. Any other"
|
|
" artistic or thematic details that can make the image"
|
|
" more vivid and compelling. Help the image generator"
|
|
" create better images by enriching the prompt."
|
|
)
|
|
llm_result = self.llm.generate([enrichment_task])
|
|
return (
|
|
llm_result.generations[0][0].text[:500]
|
|
if llm_result.generations
|
|
else None
|
|
)
|
|
|
|
def run_gradio(self, initial_prompt, num_iterations, run_folder):
|
|
results = []
|
|
current_prompt = initial_prompt
|
|
|
|
for i in range(num_iterations):
|
|
enriched_prompt = (
|
|
self.enrich_prompt(current_prompt)
|
|
if i == 0
|
|
else current_prompt
|
|
)
|
|
img_path = sd_api.generate_and_move_image(
|
|
enriched_prompt, i, run_folder
|
|
)
|
|
analysis = (
|
|
self.vision_api.run(img_path, enriched_prompt)
|
|
if img_path
|
|
else None
|
|
)
|
|
|
|
if analysis:
|
|
current_prompt += (
|
|
". " + analysis[:500]
|
|
) # Ensuring the analysis is concise
|
|
results.append((enriched_prompt, img_path, analysis))
|
|
|
|
return results
|
|
|
|
|
|
# print(
|
|
# colored("---------------------------------------- MultiModal Tree of Thought agents for Image Generation", "cyan", attrs=["bold"])
|
|
# )
|
|
# # User input and setup
|
|
# user_prompt = input("Prompt for image generation: ")
|
|
# num_iterations = int(
|
|
# input("Enter the number of iterations for image improvement: ")
|
|
# )
|
|
# run_folder = os.path.join(
|
|
# "runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
# )
|
|
# os.makedirs(run_folder, exist_ok=True)
|
|
|
|
# print(
|
|
# colored(
|
|
# f"---------------------------------- Running Multi-Modal Tree of thoughts agent with {num_iterations} iterations", "green"
|
|
# )
|
|
# )
|
|
# # Initialize and run the agent
|
|
# idea2image_agent = Idea2Image(gpt_api, vision_api)
|
|
# idea2image_agent.run(user_prompt, num_iterations, run_folder)
|
|
|
|
# print("Idea space has been traversed.")
|
|
|
|
|
|
# Load environment variables and initialize the models
|
|
load_dotenv()
|
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
stability_api_key = os.getenv("STABLE_API_KEY")
|
|
vision_api = GPT4VisionAPI(api_key=openai_api_key)
|
|
sd_api = StableDiffusion(api_key=stability_api_key)
|
|
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
|
|
|
|
# Define the modified Idea2Image class here
|
|
|
|
# Streamlit UI layout
|
|
st.title(
|
|
"Explore the infinite Multi-Modal Idea Space with Idea2Image"
|
|
)
|
|
user_prompt = st.text_input("Prompt for image generation:")
|
|
num_iterations = st.number_input(
|
|
"Enter the number of iterations for image improvement:",
|
|
min_value=1,
|
|
step=1,
|
|
)
|
|
|
|
if st.button("Generate Image"):
|
|
run_folder = os.path.join(
|
|
"runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
)
|
|
os.makedirs(run_folder, exist_ok=True)
|
|
idea2image_agent = Idea2Image(gpt_api, vision_api)
|
|
|
|
results = idea2image_agent.run_gradio(
|
|
user_prompt, num_iterations, run_folder
|
|
)
|
|
|
|
for i, (enriched_prompt, img_path, analysis) in enumerate(
|
|
results
|
|
):
|
|
st.write(f"Iteration {i + 1}:")
|
|
st.write("Enriched Prompt:", enriched_prompt)
|
|
if img_path:
|
|
st.image(img_path, caption="Generated Image")
|
|
else:
|
|
st.error("Failed to generate image")
|
|
if analysis:
|
|
st.write("Image Analysis:", analysis)
|
|
|
|
st.success("Idea space has been traversed.")
|
|
|
|
# [Add any additional necessary code adjustments]
|