You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/agents/reasoning_agents.py

260 lines
9.5 KiB

from typing import List, Literal, Dict, Callable, Any
from swarms.agents.consistency_agent import SelfConsistencyAgent
from swarms.agents.flexion_agent import ReflexionAgent
from swarms.agents.gkp_agent import GKPAgent
from swarms.agents.i_agent import (
IterativeReflectiveExpansion as IREAgent,
)
from swarms.agents.reasoning_duo import ReasoningDuo
from swarms.structs.output_types import OutputType
from swarms.agents.agent_judge import AgentJudge
agent_types = Literal[
"reasoning-duo",
"self-consistency",
"ire",
"reasoning-agent",
"consistency-agent",
"ire-agent",
"ReflexionAgent",
"GKPAgent",
"AgentJudge",
]
class ReasoningAgentRouter:
"""
A Reasoning Agent that can answer questions and assist with various tasks using different reasoning strategies.
Attributes:
agent_name (str): The name of the agent.
description (str): A brief description of the agent's capabilities.
model_name (str): The name of the model used for reasoning.
system_prompt (str): The prompt that guides the agent's reasoning process.
max_loops (int): The maximum number of loops for the reasoning process.
swarm_type (agent_types): The type of reasoning swarm to use (e.g., reasoning duo, self-consistency, IRE).
num_samples (int): The number of samples to generate for self-consistency agents.
output_type (OutputType): The format of the output (e.g., dict, list).
"""
def __init__(
self,
agent_name: str = "reasoning_agent",
description: str = "A reasoning agent that can answer questions and help with tasks.",
model_name: str = "gpt-4o-mini",
system_prompt: str = "You are a helpful assistant that can answer questions and help with tasks.",
max_loops: int = 1,
swarm_type: agent_types = "reasoning_duo",
num_samples: int = 1,
output_type: OutputType = "dict",
num_knowledge_items: int = 6,
memory_capacity: int = 6,
):
self.agent_name = agent_name
self.description = description
self.model_name = model_name
self.system_prompt = system_prompt
self.max_loops = max_loops
self.swarm_type = swarm_type
self.num_samples = num_samples
self.output_type = output_type
self.num_knowledge_items = num_knowledge_items
self.memory_capacity = memory_capacity
# Added: Initialize the factory mapping dictionary
self._initialize_agent_factories()
# Added: Factory method initialization function
def _initialize_agent_factories(self) -> None:
"""
Initialize the agent factory mapping dictionary, mapping various agent types to their respective creation functions.
This method replaces the original if-elif chain, making the code easier to maintain and extend.
"""
self.agent_factories: Dict[str, Callable[[], Any]] = {
# ReasoningDuo factory methods
"reasoning-duo": self._create_reasoning_duo,
"reasoning-agent": self._create_reasoning_duo,
# SelfConsistencyAgent factory methods
"self-consistency": self._create_consistency_agent,
"consistency-agent": self._create_consistency_agent,
# IREAgent factory methods
"ire": self._create_ire_agent,
"ire-agent": self._create_ire_agent,
# Other agent type factory methods
"AgentJudge": self._create_agent_judge,
"ReflexionAgent": self._create_reflexion_agent,
"GKPAgent": self._create_gkp_agent
}
# Added: Concrete factory methods for various agent types
def _create_reasoning_duo(self):
"""Creates an agent instance for ReasoningDuo type"""
return ReasoningDuo(
agent_name=self.agent_name,
agent_description=self.description,
model_name=[self.model_name, self.model_name],
system_prompt=self.system_prompt,
output_type=self.output_type,
)
def _create_consistency_agent(self):
"""Creates an agent instance for SelfConsistencyAgent type"""
return SelfConsistencyAgent(
agent_name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
num_samples=self.num_samples,
output_type=self.output_type,
)
def _create_ire_agent(self):
"""Creates an agent instance for IREAgent type"""
return IREAgent(
agent_name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
max_iterations=self.num_samples,
output_type=self.output_type,
)
def _create_agent_judge(self):
"""Creates an agent instance for AgentJudge type"""
return AgentJudge(
agent_name=self.agent_name,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
)
def _create_reflexion_agent(self):
"""Creates an agent instance for ReflexionAgent type"""
return ReflexionAgent(
agent_name=self.agent_name,
system_prompt=self.system_prompt,
model_name=self.model_name,
max_loops=self.max_loops,
)
def _create_gkp_agent(self):
"""Creates an agent instance for GKPAgent type"""
return GKPAgent(
agent_name=self.agent_name,
model_name=self.model_name,
num_knowledge_items=self.num_knowledge_items,
)
def select_swarm(self):
"""
Selects and initializes the appropriate reasoning swarm based on the specified swarm type.
Returns:
An instance of the selected reasoning swarm.
"""
# Commented out original if-elif chain implementation
"""
if (
self.swarm_type == "reasoning-duo"
or self.swarm_type == "reasoning-agent"
):
return ReasoningDuo(
agent_name=self.agent_name,
agent_description=self.description,
model_name=[self.model_name, self.model_name],
system_prompt=self.system_prompt,
output_type=self.output_type,
)
elif (
self.swarm_type == "self-consistency"
or self.swarm_type == "consistency-agent"
):
return SelfConsistencyAgent(
agent_name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
num_samples=self.num_samples,
output_type=self.output_type,
)
elif (
self.swarm_type == "ire" or self.swarm_type == "ire-agent"
):
return IREAgent(
agent_name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
max_iterations=self.num_samples,
output_type=self.output_type,
)
elif self.swarm_type == "AgentJudge":
return AgentJudge(
agent_name=self.agent_name,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
)
elif self.swarm_type == "ReflexionAgent":
return ReflexionAgent(
agent_name=self.agent_name,
system_prompt=self.system_prompt,
model_name=self.model_name,
max_loops=self.max_loops,
)
elif self.swarm_type == "GKPAgent":
return GKPAgent(
agent_name=self.agent_name,
model_name=self.model_name,
num_knowledge_items=self.num_knowledge_items,
)
else:
raise ValueError(f"Invalid swarm type: {self.swarm_type}")
"""
# Added: Implementation using factory pattern and dictionary mapping
try:
# Get the corresponding creation function from the factory dictionary and call it
return self.agent_factories[self.swarm_type]()
except KeyError:
# Maintain the same error handling as the original code
raise ValueError(f"Invalid swarm type: {self.swarm_type}")
def run(self, task: str, *args, **kwargs):
"""
Executes the selected swarm's reasoning process on the given task.
Args:
task (str): The task or question to be processed by the reasoning agent.
Returns:
The result of the reasoning process.
"""
swarm = self.select_swarm()
return swarm.run(task=task)
def batched_run(self, tasks: List[str], *args, **kwargs):
"""
Executes the reasoning process on a batch of tasks.
Args:
tasks (List[str]): A list of tasks to be processed.
Returns:
List of results from the reasoning process for each task.
"""
results = []
for task in tasks:
results.append(self.run(task, *args, **kwargs))
return results