You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
1.4 KiB
50 lines
1.4 KiB
from pydantic import BaseModel, Field
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from swarms import ToolAgent
|
|
from swarms.utils.json_utils import base_model_to_json
|
|
|
|
# Load the pre-trained model and tokenizer
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"databricks/dolly-v2-12b",
|
|
load_in_4bit=True,
|
|
device_map="auto",
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
|
|
|
|
|
|
# Initialize the schema for the person's information
|
|
class Schema(BaseModel):
|
|
name: str = Field(..., title="Name of the person")
|
|
agent: int = Field(..., title="Age of the person")
|
|
is_student: bool = Field(
|
|
..., title="Whether the person is a student"
|
|
)
|
|
courses: list[str] = Field(
|
|
..., title="List of courses the person is taking"
|
|
)
|
|
|
|
|
|
# Convert the schema to a JSON string
|
|
tool_schema = base_model_to_json(Schema)
|
|
|
|
# Define the task to generate a person's information
|
|
task = (
|
|
"Generate a person's information based on the following schema:"
|
|
)
|
|
|
|
# Create an instance of the ToolAgent class
|
|
agent = ToolAgent(
|
|
name="dolly-function-agent",
|
|
description="Ana gent to create a child data",
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
json_schema=tool_schema,
|
|
)
|
|
|
|
# Run the agent to generate the person's information
|
|
generated_data = agent.run(task)
|
|
|
|
# Print the generated data
|
|
print(f"Generated data: {generated_data}")
|