Update README.md

main
ACID Design Lab 7 months ago committed by GitHub
parent 8f4dad0c27
commit 0bac55f437
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -54,6 +54,8 @@
d) <strong> Hybrid algorithm </strong> is the most optimal choice, since simple classification/regression models can be "inversed" using evolutionary algorithms. Moreover, results obtained by simpler models can be reused by more complex to compensate for insufficient data.
<h1></h1>
<h4> <ins>2. Create a database</ins>. Process datasets, look for more data, merge it, clean, and unify, create a database with DBMS. </h4>
- study the organization of data in the datasets
@ -66,6 +68,8 @@
- move the data to DBMS
- set up access, data retrieval etc.
<h1></h1>
<h4> <ins>3. Analyze the data</ins>. Perform sequence alignment, look for conservative patterns, study correlations. </h4>
- perform local or global sequence alignment on CPP and non-CPP sequences (either all or particular groups/clusters)
@ -74,6 +78,8 @@
- make correlation plots for categorical and numeric parameters
- try to answer the question what parameters and sequence patterns lead to best-performing CPPs
<h1></h1>
<h4> <ins>4. Choose the models</ins>. Find the best-performing classification/regression/generation models to develop and compare. </h4>
- do not screen models which were shown to underperform most of the modern ML/DL models
@ -81,6 +87,8 @@
- you can use models pre-trained on more abundant data (transfer learning)
- prioritize interpretable models over black-box
<h1></h1>
<h4> <ins>5. Build and optimize the models</ins>. Check model performance on default parameters, optimize hyperparameters and architechture. </h4>
- choose the logic of train/test split (random, stratified, rule-based etc.)
@ -89,6 +97,8 @@
- make a list of architectures you want to test (for neural networks)
- choose a method for hyperparameter tuning (Optuna, Grid search etc.)
<h1></h1>
<h4> <ins>6. Choose the best-performing model</ins>. Prioritize the list of models by accuracy, interpretability, extrapolative power, and robustness. </h4>
- analyze model performance (use appropriate classification/regression metrics or loss functions)
@ -97,6 +107,8 @@
- analyze model speed
- choose the best model according to these parameters
<h1></h1>
<h4> <ins>7. Validate your model</ins>. Use computational, predictive, or hybrid approaches to check model consistency with first principles and previous studies. </h4>
- choose the methods for additional model validation (computational models, benchmarked ML/DL models, hybrid approaches)
@ -104,6 +116,8 @@
- analyze how good these methods explain obtained results
- generate novel CPPs for validation
<h1></h1>
<h4> <ins>8. Formalize the results</ins>. Create a repo, systematize analysis results, submit the code, ensure the code is reproducible, usable, and readable. </h4>
- create a GitHub repository structure
@ -149,7 +163,7 @@
- uptake type,
- sequence.
<hr style="border:0.5 solid gray">
<h1></h1>
<h3> 2. Natural CPPs </h3>
@ -173,7 +187,7 @@
Represents a balanced dataset of CPPs and non-CPPs; often used for model benchmarking.
<hr style="border:1px solid gray">
<h1></h1>
<h3> 3. Non-CPPs </h3>
@ -188,7 +202,7 @@
Contains non-CPP sequences shown not to demonstrate activity experimentally.
<hr style="border:1px solid gray">
<h1></h1>
<h3> 4. Non-Natural CPPs </h3>
@ -219,7 +233,7 @@
<img src="https://github.com/acid-design-lab/DataCon24/assets/82499756/640ee468-cac2-4e7d-8042-8baf68bbe865" alt="drawing" width="500"/>
<hr style="border:1px solid gray">
<h1></h1>
<h3> Modelling of interaction with membrane </h3>
@ -235,7 +249,7 @@
<img src="https://github.com/acid-design-lab/DataCon24/assets/82499756/22cd60b9-0d0f-4021-a61e-8b0865c8b583" alt="drawing" width="500"/>
<hr style="border:1px solid gray">
<h1></h1>
<h3> Membrane permeability prediction </h3>

Loading…
Cancel
Save