diff --git a/Useful tools/Structure prediction with AlphaFold2.ipynb b/Useful tools/Structure prediction with AlphaFold2.ipynb
new file mode 100644
index 0000000..f84adea
--- /dev/null
+++ b/Useful tools/Structure prediction with AlphaFold2.ipynb
@@ -0,0 +1,669 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "name": "AlphaFold2.ipynb",
+ "provenance": [],
+ "machine_shape": "hm",
+ "gpuType": "T4"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "G4yBrceuFbf3"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "##ColabFold v1.5.5: AlphaFold2 using MMseqs2\n",
+ "\n",
+ "Easy to use protein structure and complex prediction using [AlphaFold2](https://www.nature.com/articles/s41586-021-03819-2) and [Alphafold2-multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1). Sequence alignments/templates are generated through [MMseqs2](mmseqs.com) and [HHsearch](https://github.com/soedinglab/hh-suite). For more details, see bottom of the notebook, checkout the [ColabFold GitHub](https://github.com/sokrypton/ColabFold) and read our manuscript.\n",
+ "Old versions: [v1.4](https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.4.0/AlphaFold2.ipynb), [v1.5.1](https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.5.1/AlphaFold2.ipynb), [v1.5.2](https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.5.2/AlphaFold2.ipynb), [v1.5.3-patch](https://colab.research.google.com/github/sokrypton/ColabFold/blob/56c72044c7d51a311ca99b953a71e552fdc042e1/AlphaFold2.ipynb)\n",
+ "\n",
+ "[Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all.\n",
+ "*Nature Methods*, 2022](https://www.nature.com/articles/s41592-022-01488-1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "kOblAo-xetgx",
+ "cellView": "form",
+ "outputId": "861d3e4f-ba01-4c52-fadf-e5f0a65509d9",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "source": [
+ "#@title Input protein sequence(s), then hit `Runtime` -> `Run all`\n",
+ "from google.colab import files\n",
+ "import os\n",
+ "import re\n",
+ "import hashlib\n",
+ "import random\n",
+ "\n",
+ "from sys import version_info\n",
+ "python_version = f\"{version_info.major}.{version_info.minor}\"\n",
+ "\n",
+ "def add_hash(x,y):\n",
+ " return x+\"_\"+hashlib.sha1(y.encode()).hexdigest()[:5]\n",
+ "\n",
+ "query_sequence = 'AAVALLPAVLLALLAVTDQLGEDFFAVDLEAFLQEFGLLPEKE' #@param {type:\"string\"}\n",
+ "#@markdown - Use `:` to specify inter-protein chainbreaks for **modeling complexes** (supports homo- and hetro-oligomers). For example **PI...SK:PI...SK** for a homodimer\n",
+ "jobname = 'test' #@param {type:\"string\"}\n",
+ "# number of models to use\n",
+ "num_relax = 0 #@param [0, 1, 5] {type:\"raw\"}\n",
+ "#@markdown - specify how many of the top ranked structures to relax using amber\n",
+ "template_mode = \"none\" #@param [\"none\", \"pdb100\",\"custom\"]\n",
+ "#@markdown - `none` = no template information is used. `pdb100` = detect templates in pdb100 (see [notes](#pdb100)). `custom` - upload and search own templates (PDB or mmCIF format, see [notes](#custom_templates))\n",
+ "\n",
+ "use_amber = num_relax > 0\n",
+ "\n",
+ "# remove whitespaces\n",
+ "query_sequence = \"\".join(query_sequence.split())\n",
+ "\n",
+ "basejobname = \"\".join(jobname.split())\n",
+ "basejobname = re.sub(r'\\W+', '', basejobname)\n",
+ "jobname = add_hash(basejobname, query_sequence)\n",
+ "\n",
+ "# check if directory with jobname exists\n",
+ "def check(folder):\n",
+ " if os.path.exists(folder):\n",
+ " return False\n",
+ " else:\n",
+ " return True\n",
+ "if not check(jobname):\n",
+ " n = 0\n",
+ " while not check(f\"{jobname}_{n}\"): n += 1\n",
+ " jobname = f\"{jobname}_{n}\"\n",
+ "\n",
+ "# make directory to save results\n",
+ "os.makedirs(jobname, exist_ok=True)\n",
+ "\n",
+ "# save queries\n",
+ "queries_path = os.path.join(jobname, f\"{jobname}.csv\")\n",
+ "with open(queries_path, \"w\") as text_file:\n",
+ " text_file.write(f\"id,sequence\\n{jobname},{query_sequence}\")\n",
+ "\n",
+ "if template_mode == \"pdb100\":\n",
+ " use_templates = True\n",
+ " custom_template_path = None\n",
+ "elif template_mode == \"custom\":\n",
+ " custom_template_path = os.path.join(jobname,f\"template\")\n",
+ " os.makedirs(custom_template_path, exist_ok=True)\n",
+ " uploaded = files.upload()\n",
+ " use_templates = True\n",
+ " for fn in uploaded.keys():\n",
+ " os.rename(fn,os.path.join(custom_template_path,fn))\n",
+ "else:\n",
+ " custom_template_path = None\n",
+ " use_templates = False\n",
+ "\n",
+ "print(\"jobname\",jobname)\n",
+ "print(\"sequence\",query_sequence)\n",
+ "print(\"length\",len(query_sequence.replace(\":\",\"\")))\n",
+ "\n"
+ ],
+ "execution_count": 1,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "jobname test_21d06\n",
+ "sequence AAVALLPAVLLALLAVTDQLGEDFFAVDLEAFLQEFGLLPEKE\n",
+ "length 43\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#@title Install dependencies\n",
+ "%%time\n",
+ "import os\n",
+ "USE_AMBER = use_amber\n",
+ "USE_TEMPLATES = use_templates\n",
+ "PYTHON_VERSION = python_version\n",
+ "\n",
+ "if not os.path.isfile(\"COLABFOLD_READY\"):\n",
+ " print(\"installing colabfold...\")\n",
+ " os.system(\"pip install -q --no-warn-conflicts 'colabfold[alphafold-minus-jax] @ git+https://github.com/sokrypton/ColabFold'\")\n",
+ " if os.environ.get('TPU_NAME', False) != False:\n",
+ " os.system(\"pip uninstall -y jax jaxlib\")\n",
+ " os.system(\"pip install --no-warn-conflicts --upgrade dm-haiku==0.0.10 'jax[cuda12_pip]'==0.3.25 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html\")\n",
+ " os.system(\"ln -s /usr/local/lib/python3.*/dist-packages/colabfold colabfold\")\n",
+ " os.system(\"ln -s /usr/local/lib/python3.*/dist-packages/alphafold alphafold\")\n",
+ " os.system(\"touch COLABFOLD_READY\")\n",
+ "\n",
+ "if USE_AMBER or USE_TEMPLATES:\n",
+ " if not os.path.isfile(\"CONDA_READY\"):\n",
+ " print(\"installing conda...\")\n",
+ " os.system(\"wget -qnc https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh\")\n",
+ " os.system(\"bash Mambaforge-Linux-x86_64.sh -bfp /usr/local\")\n",
+ " os.system(\"mamba config --set auto_update_conda false\")\n",
+ " os.system(\"touch CONDA_READY\")\n",
+ "\n",
+ "if USE_TEMPLATES and not os.path.isfile(\"HH_READY\") and USE_AMBER and not os.path.isfile(\"AMBER_READY\"):\n",
+ " print(\"installing hhsuite and amber...\")\n",
+ " os.system(f\"mamba install -y -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0 openmm=7.7.0 python='{PYTHON_VERSION}' pdbfixer\")\n",
+ " os.system(\"touch HH_READY\")\n",
+ " os.system(\"touch AMBER_READY\")\n",
+ "else:\n",
+ " if USE_TEMPLATES and not os.path.isfile(\"HH_READY\"):\n",
+ " print(\"installing hhsuite...\")\n",
+ " os.system(f\"mamba install -y -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0 python='{PYTHON_VERSION}'\")\n",
+ " os.system(\"touch HH_READY\")\n",
+ " if USE_AMBER and not os.path.isfile(\"AMBER_READY\"):\n",
+ " print(\"installing amber...\")\n",
+ " os.system(f\"mamba install -y -c conda-forge openmm=7.7.0 python='{PYTHON_VERSION}' pdbfixer\")\n",
+ " os.system(\"touch AMBER_READY\")"
+ ],
+ "metadata": {
+ "cellView": "form",
+ "id": "AzIKiDiCaHAn",
+ "outputId": "17095677-05ce-4e08-efa1-c70bd9f81012",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "installing colabfold...\n",
+ "CPU times: user 238 ms, sys: 28.3 ms, total: 266 ms\n",
+ "Wall time: 1min 2s\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#@markdown ### MSA options (custom MSA upload, single sequence, pairing mode)\n",
+ "msa_mode = \"mmseqs2_uniref_env\" #@param [\"mmseqs2_uniref_env\", \"mmseqs2_uniref\",\"single_sequence\",\"custom\"]\n",
+ "pair_mode = \"unpaired_paired\" #@param [\"unpaired_paired\",\"paired\",\"unpaired\"] {type:\"string\"}\n",
+ "#@markdown - \"unpaired_paired\" = pair sequences from same species + unpaired MSA, \"unpaired\" = seperate MSA for each chain, \"paired\" - only use paired sequences.\n",
+ "\n",
+ "# decide which a3m to use\n",
+ "if \"mmseqs2\" in msa_mode:\n",
+ " a3m_file = os.path.join(jobname,f\"{jobname}.a3m\")\n",
+ "\n",
+ "elif msa_mode == \"custom\":\n",
+ " a3m_file = os.path.join(jobname,f\"{jobname}.custom.a3m\")\n",
+ " if not os.path.isfile(a3m_file):\n",
+ " custom_msa_dict = files.upload()\n",
+ " custom_msa = list(custom_msa_dict.keys())[0]\n",
+ " header = 0\n",
+ " import fileinput\n",
+ " for line in fileinput.FileInput(custom_msa,inplace=1):\n",
+ " if line.startswith(\">\"):\n",
+ " header = header + 1\n",
+ " if not line.rstrip():\n",
+ " continue\n",
+ " if line.startswith(\">\") == False and header == 1:\n",
+ " query_sequence = line.rstrip()\n",
+ " print(line, end='')\n",
+ "\n",
+ " os.rename(custom_msa, a3m_file)\n",
+ " queries_path=a3m_file\n",
+ " print(f\"moving {custom_msa} to {a3m_file}\")\n",
+ "\n",
+ "else:\n",
+ " a3m_file = os.path.join(jobname,f\"{jobname}.single_sequence.a3m\")\n",
+ " with open(a3m_file, \"w\") as text_file:\n",
+ " text_file.write(\">1\\n%s\" % query_sequence)"
+ ],
+ "metadata": {
+ "cellView": "form",
+ "id": "C2_sh2uAonJH"
+ },
+ "execution_count": 3,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#@markdown ### Advanced settings\n",
+ "model_type = \"auto\" #@param [\"auto\", \"alphafold2_ptm\", \"alphafold2_multimer_v1\", \"alphafold2_multimer_v2\", \"alphafold2_multimer_v3\", \"deepfold_v1\"]\n",
+ "#@markdown - if `auto` selected, will use `alphafold2_ptm` for monomer prediction and `alphafold2_multimer_v3` for complex prediction.\n",
+ "#@markdown Any of the mode_types can be used (regardless if input is monomer or complex).\n",
+ "num_recycles = \"3\" #@param [\"auto\", \"0\", \"1\", \"3\", \"6\", \"12\", \"24\", \"48\"]\n",
+ "#@markdown - if `auto` selected, will use `num_recycles=20` if `model_type=alphafold2_multimer_v3`, else `num_recycles=3` .\n",
+ "recycle_early_stop_tolerance = \"auto\" #@param [\"auto\", \"0.0\", \"0.5\", \"1.0\"]\n",
+ "#@markdown - if `auto` selected, will use `tol=0.5` if `model_type=alphafold2_multimer_v3` else `tol=0.0`.\n",
+ "relax_max_iterations = 200 #@param [0, 200, 2000] {type:\"raw\"}\n",
+ "#@markdown - max amber relax iterations, `0` = unlimited (AlphaFold2 default, can take very long)\n",
+ "pairing_strategy = \"greedy\" #@param [\"greedy\", \"complete\"] {type:\"string\"}\n",
+ "#@markdown - `greedy` = pair any taxonomically matching subsets, `complete` = all sequences have to match in one line.\n",
+ "\n",
+ "\n",
+ "#@markdown #### Sample settings\n",
+ "#@markdown - enable dropouts and increase number of seeds to sample predictions from uncertainty of the model.\n",
+ "#@markdown - decrease `max_msa` to increase uncertainity\n",
+ "max_msa = \"auto\" #@param [\"auto\", \"512:1024\", \"256:512\", \"64:128\", \"32:64\", \"16:32\"]\n",
+ "num_seeds = 1 #@param [1,2,4,8,16] {type:\"raw\"}\n",
+ "use_dropout = False #@param {type:\"boolean\"}\n",
+ "\n",
+ "num_recycles = None if num_recycles == \"auto\" else int(num_recycles)\n",
+ "recycle_early_stop_tolerance = None if recycle_early_stop_tolerance == \"auto\" else float(recycle_early_stop_tolerance)\n",
+ "if max_msa == \"auto\": max_msa = None\n",
+ "\n",
+ "#@markdown #### Save settings\n",
+ "save_all = False #@param {type:\"boolean\"}\n",
+ "save_recycles = False #@param {type:\"boolean\"}\n",
+ "save_to_google_drive = False #@param {type:\"boolean\"}\n",
+ "#@markdown - if the save_to_google_drive option was selected, the result zip will be uploaded to your Google Drive\n",
+ "dpi = 200 #@param {type:\"integer\"}\n",
+ "#@markdown - set dpi for image resolution\n",
+ "\n",
+ "if save_to_google_drive:\n",
+ " from pydrive2.drive import GoogleDrive\n",
+ " from pydrive2.auth import GoogleAuth\n",
+ " from google.colab import auth\n",
+ " from oauth2client.client import GoogleCredentials\n",
+ " auth.authenticate_user()\n",
+ " gauth = GoogleAuth()\n",
+ " gauth.credentials = GoogleCredentials.get_application_default()\n",
+ " drive = GoogleDrive(gauth)\n",
+ " print(\"You are logged into Google Drive and are good to go!\")\n",
+ "\n",
+ "#@markdown Don't forget to hit `Runtime` -> `Run all` after updating the form."
+ ],
+ "metadata": {
+ "cellView": "form",
+ "id": "ADDuaolKmjGW"
+ },
+ "execution_count": 4,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#@title Run Prediction\n",
+ "display_images = True #@param {type:\"boolean\"}\n",
+ "\n",
+ "import sys\n",
+ "import warnings\n",
+ "warnings.simplefilter(action='ignore', category=FutureWarning)\n",
+ "from Bio import BiopythonDeprecationWarning\n",
+ "warnings.simplefilter(action='ignore', category=BiopythonDeprecationWarning)\n",
+ "from pathlib import Path\n",
+ "from colabfold.download import download_alphafold_params, default_data_dir\n",
+ "from colabfold.utils import setup_logging\n",
+ "from colabfold.batch import get_queries, run, set_model_type\n",
+ "from colabfold.plot import plot_msa_v2\n",
+ "\n",
+ "import os\n",
+ "import numpy as np\n",
+ "try:\n",
+ " K80_chk = os.popen('nvidia-smi | grep \"Tesla K80\" | wc -l').read()\n",
+ "except:\n",
+ " K80_chk = \"0\"\n",
+ " pass\n",
+ "if \"1\" in K80_chk:\n",
+ " print(\"WARNING: found GPU Tesla K80: limited to total length < 1000\")\n",
+ " if \"TF_FORCE_UNIFIED_MEMORY\" in os.environ:\n",
+ " del os.environ[\"TF_FORCE_UNIFIED_MEMORY\"]\n",
+ " if \"XLA_PYTHON_CLIENT_MEM_FRACTION\" in os.environ:\n",
+ " del os.environ[\"XLA_PYTHON_CLIENT_MEM_FRACTION\"]\n",
+ "\n",
+ "from colabfold.colabfold import plot_protein\n",
+ "from pathlib import Path\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# For some reason we need that to get pdbfixer to import\n",
+ "if use_amber and f\"/usr/local/lib/python{python_version}/site-packages/\" not in sys.path:\n",
+ " sys.path.insert(0, f\"/usr/local/lib/python{python_version}/site-packages/\")\n",
+ "\n",
+ "def input_features_callback(input_features):\n",
+ " if display_images:\n",
+ " plot_msa_v2(input_features)\n",
+ " plt.show()\n",
+ " plt.close()\n",
+ "\n",
+ "def prediction_callback(protein_obj, length,\n",
+ " prediction_result, input_features, mode):\n",
+ " model_name, relaxed = mode\n",
+ " if not relaxed:\n",
+ " if display_images:\n",
+ " fig = plot_protein(protein_obj, Ls=length, dpi=150)\n",
+ " plt.show()\n",
+ " plt.close()\n",
+ "\n",
+ "result_dir = jobname\n",
+ "log_filename = os.path.join(jobname,\"log.txt\")\n",
+ "setup_logging(Path(log_filename))\n",
+ "\n",
+ "queries, is_complex = get_queries(queries_path)\n",
+ "model_type = set_model_type(is_complex, model_type)\n",
+ "\n",
+ "if \"multimer\" in model_type and max_msa is not None:\n",
+ " use_cluster_profile = False\n",
+ "else:\n",
+ " use_cluster_profile = True\n",
+ "\n",
+ "download_alphafold_params(model_type, Path(\".\"))\n",
+ "results = run(\n",
+ " queries=queries,\n",
+ " result_dir=result_dir,\n",
+ " use_templates=use_templates,\n",
+ " custom_template_path=custom_template_path,\n",
+ " num_relax=num_relax,\n",
+ " msa_mode=msa_mode,\n",
+ " model_type=model_type,\n",
+ " num_models=5,\n",
+ " num_recycles=num_recycles,\n",
+ " relax_max_iterations=relax_max_iterations,\n",
+ " recycle_early_stop_tolerance=recycle_early_stop_tolerance,\n",
+ " num_seeds=num_seeds,\n",
+ " use_dropout=use_dropout,\n",
+ " model_order=[1,2,3,4,5],\n",
+ " is_complex=is_complex,\n",
+ " data_dir=Path(\".\"),\n",
+ " keep_existing_results=False,\n",
+ " rank_by=\"auto\",\n",
+ " pair_mode=pair_mode,\n",
+ " pairing_strategy=pairing_strategy,\n",
+ " stop_at_score=float(100),\n",
+ " prediction_callback=prediction_callback,\n",
+ " dpi=dpi,\n",
+ " zip_results=False,\n",
+ " save_all=save_all,\n",
+ " max_msa=max_msa,\n",
+ " use_cluster_profile=use_cluster_profile,\n",
+ " input_features_callback=input_features_callback,\n",
+ " save_recycles=save_recycles,\n",
+ " user_agent=\"colabfold/google-colab-main\",\n",
+ ")\n",
+ "results_zip = f\"{jobname}.result.zip\"\n",
+ "os.system(f\"zip -r {results_zip} {jobname}\")"
+ ],
+ "metadata": {
+ "cellView": "form",
+ "id": "mbaIO9pWjaN0",
+ "collapsed": true,
+ "outputId": "ff931b5c-704e-40bd-d54a-eb527361150f",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Downloading alphafold2_ptm weights to .: 83%|████████▎ | 2.86G/3.47G [02:18<00:28, 22.9MB/s]"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "KK7X9T44pWb7",
+ "cellView": "form"
+ },
+ "source": [
+ "#@title Display 3D structure {run: \"auto\"}\n",
+ "import py3Dmol\n",
+ "import glob\n",
+ "import matplotlib.pyplot as plt\n",
+ "from colabfold.colabfold import plot_plddt_legend\n",
+ "from colabfold.colabfold import pymol_color_list, alphabet_list\n",
+ "rank_num = 1 #@param [\"1\", \"2\", \"3\", \"4\", \"5\"] {type:\"raw\"}\n",
+ "color = \"lDDT\" #@param [\"chain\", \"lDDT\", \"rainbow\"]\n",
+ "show_sidechains = False #@param {type:\"boolean\"}\n",
+ "show_mainchains = False #@param {type:\"boolean\"}\n",
+ "\n",
+ "tag = results[\"rank\"][0][rank_num - 1]\n",
+ "jobname_prefix = \".custom\" if msa_mode == \"custom\" else \"\"\n",
+ "pdb_filename = f\"{jobname}/{jobname}{jobname_prefix}_unrelaxed_{tag}.pdb\"\n",
+ "pdb_file = glob.glob(pdb_filename)\n",
+ "\n",
+ "def show_pdb(rank_num=1, show_sidechains=False, show_mainchains=False, color=\"lDDT\"):\n",
+ " model_name = f\"rank_{rank_num}\"\n",
+ " view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js',)\n",
+ " view.addModel(open(pdb_file[0],'r').read(),'pdb')\n",
+ "\n",
+ " if color == \"lDDT\":\n",
+ " view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':50,'max':90}}})\n",
+ " elif color == \"rainbow\":\n",
+ " view.setStyle({'cartoon': {'color':'spectrum'}})\n",
+ " elif color == \"chain\":\n",
+ " chains = len(queries[0][1]) + 1 if is_complex else 1\n",
+ " for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list):\n",
+ " view.setStyle({'chain':chain},{'cartoon': {'color':color}})\n",
+ "\n",
+ " if show_sidechains:\n",
+ " BB = ['C','O','N']\n",
+ " view.addStyle({'and':[{'resn':[\"GLY\",\"PRO\"],'invert':True},{'atom':BB,'invert':True}]},\n",
+ " {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
+ " view.addStyle({'and':[{'resn':\"GLY\"},{'atom':'CA'}]},\n",
+ " {'sphere':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
+ " view.addStyle({'and':[{'resn':\"PRO\"},{'atom':['C','O'],'invert':True}]},\n",
+ " {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
+ " if show_mainchains:\n",
+ " BB = ['C','O','N','CA']\n",
+ " view.addStyle({'atom':BB},{'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n",
+ "\n",
+ " view.zoomTo()\n",
+ " return view\n",
+ "\n",
+ "show_pdb(rank_num, show_sidechains, show_mainchains, color).show()\n",
+ "if color == \"lDDT\":\n",
+ " plot_plddt_legend().show()"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "11l8k--10q0C",
+ "cellView": "form"
+ },
+ "source": [
+ "#@title Plots {run: \"auto\"}\n",
+ "from IPython.display import display, HTML\n",
+ "import base64\n",
+ "from html import escape\n",
+ "\n",
+ "# see: https://stackoverflow.com/a/53688522\n",
+ "def image_to_data_url(filename):\n",
+ " ext = filename.split('.')[-1]\n",
+ " prefix = f'data:image/{ext};base64,'\n",
+ " with open(filename, 'rb') as f:\n",
+ " img = f.read()\n",
+ " return prefix + base64.b64encode(img).decode('utf-8')\n",
+ "\n",
+ "pae = \"\"\n",
+ "pae_file = os.path.join(jobname,f\"{jobname}{jobname_prefix}_pae.png\")\n",
+ "if os.path.isfile(pae_file):\n",
+ " pae = image_to_data_url(pae_file)\n",
+ "cov = image_to_data_url(os.path.join(jobname,f\"{jobname}{jobname_prefix}_coverage.png\"))\n",
+ "plddt = image_to_data_url(os.path.join(jobname,f\"{jobname}{jobname_prefix}_plddt.png\"))\n",
+ "display(HTML(f\"\"\"\n",
+ "\n",
+ "