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Approaches for the discovery of new cell-penetrating peptides
Ly Poroska, Ilja Gaidutšika and Ülo Langel b
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ABSTRACT
Introduction: The capability of cell-penetrating peptides (CPP), also known as protein transduction 
domains (PTD), to enter into cells possibly with an attached cargo, makes their application as delivery 
vectors or as direct therapeutics compelling. They are generally biocompatible, nontoxic, and easy to 
synthesize and modify. Three decades after the discovery of the first CPPs, ~2,000 CPP sequences have 
been identified, and many more predicted. Nevertheless, the field has a strong commitment to 
authenticate new, more efficient, and specific CPPs.
Areas covered: Although a scattering of CPPs have been found by chance, various systematic 
approaches have been developed and refined over the years to directly aid the identification and 
depiction of new peptide-based delivery vectors or therapeutics. Here, the authors give an overview of 
CPPs, and review various approaches of discovering new ones. An emphasis is placed on in silico 
methods, as these have advanced rapidly in recent years.
Expert opinion: Although there are many known CPPs, there is a need to find more efficient and 
specific CPPs. Several approaches are used to identify such sequences. The success of these approaches 
depends on the advancement of others and the successful prediction of CPP sequences relies on 
experimental data.
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1. Introduction

The cell membrane is a major limiting barrier for therapeutics 
with intracellular targets. Surmounting this barrier could 
enable new treatment possibilities for various human pathol-
ogies that are currently unaddressed. Besides therapeutic 
applications, efficient and specific delivery vectors open up 
an immense range of scientific and biotechnological applica-
tions. Both development of new, more efficient, and specific 
delivery systems and improving the ones already available, 
commit to increase the bioavailability and reduce the side 
effects associated with therapeutics today.

Cell-penetrating peptides are generally 4–40 amino acid 
(AA) long peptides that can enter into cells, and enhance the 
cellular uptake of various molecular cargoes; that otherwise 
are not able to cross the cell membrane [1]. They are consid-
ered nontoxic and do not permanently damage the cell mem-
branes while entering, or at least this should be the aim. 
Although we presently know of several efficient CPPs, they 
are unable to cover a wide range of possible applications. The 
discovery of new and efficient CPPs for research, therapeutic, 
and diagnostic applications remains a challenge. Over the 
years, several approaches aimed at finding new CPP have 
been developed, and adopted from other fields.

The remarkable notion of protein transduction was based on 
observations that some proteins that could shuttle within the cell 
and from one cell to another. In 1988 the cellular uptake of the tat 
protein of HIV-1 into cell was described [2,3]. A few years later, in 
1991, it was demonstrated that the 60 AA homeodomain of 
Antennapedia (a Drosophila homeodomain) could enter into 

cells, and later it was shown that a short pAntp43-58 peptide 
derived from this protein was sufficient for translocation [4,5]. In 
1997, the peptide sequence Tat48-60 derived from HIV tat protein, 
was identified as being required for cell entry [6], and the delivery 
of a non-covalently formed complex between a nucleic acid and 
CPP MPG was achieved [7]. In 2000, Wender et al demonstrated 
the entry of synthetic polyarginine peptides [8]. Later, Futaki et al 
demonstrated the beneficial effect of attaching stearic acid to R8 
to achieve improved delivery [9]. The first in vivo use of a CPP- 
cargo conjugate came from Langel´s group in 1998 [10]. 
Subsequently, many other CPPs have been discovered, designed, 
and tested. In 2003, the first CPP mediated therapeutic agent, 
PsorBan®, a cyclosporine-poly-arginine conjugate, entered clinical 
trial phase II, which opened the opportunity for other CPPs. 
According to the CPPSite 2.0 database, there are almost 2,000 
known CPPs, with 1,699 unique sequences [11], some of these 
have entered into clinical trials, such as XG-102, KAI-9803, R-002, 
AM-111 [12].

CPPs can be used as independent delivery vectors, but with 
the emerge of new polymer-based delivery approaches, poly-
peptide and peptide-polymer hybrids have been developed to 
overcome the limitations of peptide-based delivery vectors 
and shortcomings of polymer-based approaches. The incor-
poration or conjugation of CPPs into polymers by physical or 
chemical modifications produces multifunctional vectors with 
improved transfection efficacies, prolonged blood circulation 
times, enhanced accumulation at tumors sites, and targeting. 
CPPs can be used to functionalize polymers such as polysac-
charides, proteins, lipids, micelles, and nanoparticles [13–16]. 
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Among other examples polymers accessorized with CPP have 
demonstrated inhibition of tumor growth [17], and enhanced 
intranasal delivery of siRNA [18,19].

CPPs comprise an eminently diverse group of peptides, with 
moderate similarities between their sequences, secondary struc-
tures, internalization mechanisms, and efficacies. There are resem-
blances between CPPs such as AA compositions, origins, 
biochemical and physico-chemical properties, etc. These can be 
used to classify the vast number of CPPs. Classification itself is 
sometimes complicated, as one peptide may fall into more than 
one category, due to its overlapping properties. Different sugges-
tions for classification systems have been introduced over the 
years, for example, based on their origin, CPPs can be classified 
into designed and protein-derived peptides, or based on their 
physico-chemical or structural properties, between predicted or 
random CPPs, nonspecific, or targeted, linear or modified, etc [1]. 
The diverse, nonetheless finite, number of possibilities of classifi-
cation speaks to the versatility of CPPs. The various possibilities are 
indicative of the difficulties that may arise when trying to apply 
uniform rules to the diverse range of CPPs.

2. Discovery of new CPPs

The discovery of the first CPPs was a fortunate occurrence, and 
even today some new CPPs are discovered by serendipitous coin-
cidence. Before attempting to find new, unique CPP candidates, 
one should recognize the incoherence between different CPPs, 
and lack of specific guidelines. The approaches require different 
prerequisites, such as skills, knowledge, and available infrastruc-
ture (Table 1). Therefore, combining different approaches and 
willingness to test more peptide candidates, would be beneficial. 
Often, the discovery is not straightforward and requires several 
rounds of predictions, optimizations, and modifications (Figure 1).

Various inputs can be used as a starting point to find new 
potential CPP sequences. Without a specific protein or a peptide 
sequence in mind, a broader screen in different databases can be 
done. There are several databases available such as Uniprot [21], 
Human Protein Atlas available from http://www.proteinatlas.org, 
AMP databases such as DBAASP [22], DRAMP [23], or signal pep-
tide databases such as SignalP 5.0 [24], to name a few.

Typically protein sequences are used [5; 6; 10; 24–28]. Proteins 
have specific motifs, which encode functions generally 

characterized as binding, posttranslational modifications, and traf-
ficking [25]. Proteins with specific localization, functions, or amino 
acid patterns may include sequences for prospective CPP 
sequences, and including these patterns in the peptide sequences 
may help to fine-tune the interactions between cargo DNA and 
peptide, or increase specificity by targeting organelles. Proteins, 
their sequences, and their known functions may give a base upon 
which new targeting or biologically active peptide (e.g. inhibitor or 
effector) sequences with cell internalization properties can be 
derived. For example, a C-terminal H/KDEL sequences provide 
a signal for retrieval from the Golgi complex [26]. Often, cell- 
penetrating properties are found in viral protein-derived peptides 
[27–31] or sequences containing nuclear localization sequences 
(NLS) [32,33]. NLS is an amino acid motif found in protein 
sequences that directs protein transport or shuffling between 
the cytoplasm and the nucleus. The length and features of NLS 
sequences vary substantially; however, NLS sequences are usually 
abundant in positively charged residues, with the consensus 
sequence K-K/R-X-K/R [34]. Monopartite and bipartite NLS motifs 
have been thoroughly described. They are characterized by 
a cluster (monopartite) or two clusters (bipartite) of basic residues 
preceded by a helix-breaking residue or separated by 9–12 resi-
dues. There are several variations to this, such as longer linker 
regions, tri-partide NLS motifs, proline-tyrosine NLS with the motif 
R/K/H-X(2–5)-P-Y, etc [35]. Overlapping with NLS motifs are mole-
cular sleds, which facilitate the sliding of peptide/protein on DNA 
[36] and could potentially help to fine tune the interactions 
between CPPs and nucleic acid.

Another class of peptides, antimicrobial peptides (AMP) can be 
used as a starting point because they have several characteristics 
similar to CPPs. From AMP, with slight modifications, new CPPs 
can also be designed, such as the synthetic peptide CIGB-552 [37]. 
Several reports indicate that the biological function of highly 
cationic peptides could be switched between antimicrobial and 
cell-penetrating peptides [38,39]. Peptides with both CPP and 
AMP function are, for example, Buforin II and SynB. Some AMPs, 
for example, hipposin, a histone-derived antimicrobial peptide 
isolated from Atlantic halibut, naturally contains a CPP sequence, 
that does not have antimicrobial activity itself [40]. Another CPP, 
sC18 was derived from the C-terminal domain of the cationic AMP 
CAP18 [41]. In addition to AMPs, inhibitor or effector peptides 
(derived from proteins or independent peptides) can be modified 
to add CPP properties.

Besides trying to find CPP sequences from proteins or making 
biologically active peptides into CPPs, various building blocks 
composed of specific AAs, motifs, peptides, or other modifica-
tions (e.g. fatty acid) can be used to design new CPPs. The first 
designed CPPs included individual known CPPs fused with 
sequences containing specific functions of interest [42]. 
Addition of a known CPP, mostly Tat and polyarginine, to other 
peptides has been used to provide them with the ability to 
penetrate cells [43–46]. Several other CPPs have also been har-
nessed, such as elastin-like polypeptide added to SynB1, Tat, or 
Bac CPPs [47] or PEGA added to pVec [48]. This approach is useful 
when the cargo (e.g. peptide sequences with bioactivity) should 
be modified as little as possible to retain its activity. When adding 
known CPPs to desired sequences or cargoes, the CPP activity 
may be decreased or the cargo sequence may lose its activity. For 

Article highlights

● In silico prediction from both protein and peptide sequences signifi-
cantly increases the probability of finding new CPPs and reduce the 
need for extensive in vitro experiments.

● Although new prediction algorithms and approaches are developed, 
educated guess and trial-and-error approaches retain their impor-
tance in discovering new CPPs.

● Predictions rely on known experimental data and there is a need for 
experimental HTS approaches that increase prediction accuracy and 
versatility.

● There is no clear-cut strategy to design new CPPs.
● CPPs must be tested and modified for specific applications.

This box summarizes key points contained in the article.
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separating different functional parts of the peptide, additional 
AA, such as spans of glycines, or linkers, such as aminohexanoic 
acid, can be added. Nevertheless, testing several analogs is 
advised, especially when the cargo interactions should remain 
unaffected. Therefore, each modification should be considered 
from both a bioactivity and a cell-penetration point of view.

3. Approaches for the discovery of new CPPs

The approaches used to discover new CPPs can be broadly 
divided into experimental, in silico, and combined approaches. 
Each of which have their own advantages.

3.1. Experimental approaches

Experimental approaches allow one to collect results obtained 
with synthesized peptides. The CPP efficacy may be significantly 
affected by experimental conditions, therefore, ideally all the 
peptide candidates would be screened under the same condi-
tions. An important contribution has been made by Remaker et al, 
who screened and ranked 474 sequence motifs under the same 
experimental conditions [49]. Another E.coli based screening of 55 

peptides was performed by Oikawa et al, using fluorescence 
spectroscopy and confocal laser scanning microscopy [50]. 
Nevertheless, the peptides should also be tested for specific appli-
cations which may require suboptimal experimental conditions.

3.1.1. Trial-and-error
Trial-and-error (TE) is a fundamental approach, characterized by 
repeated, varied attempts to solve a problem. TE was frequently 
exploited in the early years of CPP research because there were 
no apparent rules to attach, and little structural resemblance 
was found between different CPPs. Although TE is expensive 
and laborious, it permits collecting experimental indications and 
step-by-step follow up of peptide efficacy and physiochemical 
characteristics. This information can be used to further refine 
predictions or modifications of CPPs. TE was used to discover 
and optimize several CPPs, such as CyLoP-1 derived from crota-
mine [51], and the chimeric CPP transportan [10].

The structure–activity relationship between point- 
mutations and protein function is widely used. One amino 
acid change may help to increase the efficacy of a peptide 
under specific conditions, such as in vivo [52], or to choose 
peptides with highest remaining bioactivity and penetration 

Figure 1. Workflow of CPP discovery, and CPP classes.
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capacity. In order to determine which AA and which position 
of the peptide sequence can and should be changed, 
a systematic approach generally helps. For example, the effi-
cacy of CPP sC18 attached to silica nanoparticles was investi-
gated by an alanine scan, by substituting each of the 16 amino 
acids systematically with an alanine residue [53]. Deletions and 
additions can also be introduced to the sequence, with the 
same objective. For example, deletion analogs of transportan 
were designed, synthesized, and tested [54], leading to the 
discovery of the most efficient analog.

Peptides in their native forms are rapidly degraded by pep-
tidases under biological conditions. By introducing different 
modifications, the stability, internalization, and/or specificity 
can be improved. Because cells contain exopeptidases, cell- 
penetrating peptides are often capped to increase their stabi-
lity, for example amidation of the C-terminus [55] and/or acet-
ylation of the N-terminus [56]. Other modifications such as 
myristoylation [57], substitutions to non-coded AA, N-terminal 
addition of fatty acid, cyclization [58], stapling [59], and the use 
of D-AA have been used [60]. Usually, these modifications help 
with increasing the efficacy/specificity/stability of a peptide, but 
the penetration ability may be lost or decreased.

Although the TE approach is most often applied, rational 
design is instituting itself in the CPP field. The data gained 
from previous structure–activity relationships instructs new 
designs. Still, each peptide and especially peptides with 
cargo must be evaluated exclusively.

3.1.2. Rational design
The first designs of CPPs were mainly based on the properties 
of the AA, the primary structure of the peptide, and its ten-
dency to form secondary structures. However, in complicated 
systems, it is difficult to predict the potency of CPPs based 
only on these criteria. Several chemical and physio-chemical 
properties, such as the charge, chirality, aromatic and hydro-
phobic content and also their co-action drive the internaliza-
tion of CPPs and should all be considered [42]. Although 
several groups have tried to develop rational approaches, 
they frequently combine it with TE. The rational design of 
new CPPs falls on one´s thorough knowledge of CPPs and 
possible modifications. Essentially, the properties of 
a peptide should be known in advance, and secondly, the 
modifications introduced should help to achieve the desired 
outcome.

Most CPPs are classified as synthetic [11], and a common 
approach for developing new CPPs is to add new sequences 
to known CPPs thereby creating chimeric/synthetic peptides. 
In the first synthetic CPP sequences, both high cationic charge 
in polyarginine [8,9], and amphipathicity in a model amphi-
pathic peptide [61] were taken as a basis for rational design. 
Further modifications in the polyarginine resulted in 
a tryptophan containing synthetic peptide and demonstrated 
how the spacing of the arginine residues influence uptake 
[62]. Rational design can also be applied to other types of 
CPPs, with the aim of increasing their specificity or efficacy. In 
the PepFect and NickFect CPP families several modifications 
have been introduced over the years. Although some of the 
modifications are one-two amino acid substitutions or addi-
tions of different length fatty acids, the transfection efficacies 

differ substantially [52,63,64]. For example, reducing and re- 
distributing the net charge within the peptide sequence 
enhanced the plasmid delivery capability in vivo [52]. For 
siRNA delivery, a pH-sensitive increase in net charge and 
fatty acid modifications are advantageous [65] and new 
siRNA delivery vectors have been designed based on these 
parameters [63]. In mitochondrial-penetrating peptides 
(MMPs), two main parameters found to be important: positive 
charge and lipophilic character. Further fine-tuning of these 
improved the internalization [66] and new MPPs have been 
designed by the same group [63]. As an example of a more 
complex rational design that has been tested, a chimeric tri- 
functional peptide was created as a fusion of NLS, CPP, and an 
interfering peptide [67].

3.1.3. Phage display
Phage display methods harness bacteriophages to display 
foreign peptides on their surfaces by fusing the library or 
peptide sequence into the virus´s capsid protein [68]. The 
resulting heterogenous phages are then presented to immo-
bilized targets such as proteins, peptides, or DNA sequences. 
Only the displayed peptides or proteins that are interacting 
with target molecules are detected. It is a potent technology 
for screening and isolating target-specific peptides. Several 
tissue or cell line-specific peptide sequences have been iden-
tified, such as cardiac targeting peptides [69], fibroblast 
growth factor receptor binding sequences [70], HUVEC cell 
line-specific sequences [71]. The phage display method can 
also be used to find CPPs [72] that are not tissue-specific, such 
as a CPP from M13 phage library [73]. Phage display is 
a suitable method for selection of peptides that can be used 
as targeting sequences or cell-penetration peptides. One lim-
itation of phage display is the peptide/protein length, which 
should not interfere with the phage assembly. As a result, 
peptides that are too long, may be left out due to selection 
bias. The main advantage of phage display is that it allows one 
to screen through large numbers of possible candidates and 
select peptides based on their interactions and/or their cap-
ability for internalization.

Isolation of peptides that are capable of targeting specific 
receptors on specific cells would benefit the development of 
targeted gene therapy or therapeutics. CPPs can be modified 
with these specific ligands to improve their efficacy and specificity. 
Peptide sequences that are able to target in specific was are 
termed ‘homing peptides.’ There are several examples of chimeric 
and synthetic (cell-penetrating) peptides with targeting 
sequences, such as the glioma targeted drug delivery vector 
gHoPe [74], and brain-specific phage-derived peptide carrier [75]. 
Peptides that enable tissue specificity can be modified to become 
CPPs, or CPP sequences can be attached to targeting sequences. 
For example, adding an iRGD sequence increased the tumor 
specificity of the attached CPP [76].

Phage display can screen two or more required traits simul-
taneously and was used to detect both the targeting and 
membrane crossing ability of the cardiac targeting peptide 
CTP [69] from the M13 phage display library. A BirA-based 
(Biotin ligase) CPP discovery screen was introduced in 2018 
[77]. Inspired by phylomer peptides [78] and virus-derived 
CPPs [79] the authors used a phage-based screening platform 
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to identify ‘Phylomer’ CPPs, derived from bacterial and viral 
genomes. Only peptides with intracellular uptake and cytoso-
lic delivery are biotinylated inside cells that stably express BirA 
and these were chosen as CPPs. Thirteen unique CPPs derived 
from diverse organisms were identified using this approach.

3.1.4. mRNA display
mRNA display is also a high-throughput screening method 
[80] that can be used to both select functional peptides and 
evolve their properties. mRNA display is performed entirely 
in vitro. Although other in vitro translation approaches have 
been used [81], mRNA display has some advantages over 
other methods. It can scan through large libraries of peptide 
variants that are orders of magnitude larger than libraries that 
can be screened by other display technologies. In translation, 
due to the puromycin insertion at the 3´ end of mRNA 
sequence, the translated peptides stay associated with their 
mRNA progenitors. These mRNA representing peptides can 
afterward be used for cell experiments, from where interna-
lized and interacting peptides can be isolated and amplified 
using reverse transcription and PCR [82]. An advantage over 
other display approaches is that only the peptide-nucleotide 
conjugates, that have translocated into the cells, can be 
enriched and amplified from the lysed cells. In addition, that 
ability to screen large libraries allows one to discover very rare 
sequences and screen through a more diverse range of candi-
date sequences. Two peptides with the ability to penetrate cell 
membranes were found using mRNA display [83].

3.1.5. Other high-throughput screening (HTS) approaches
The accurate prediction of CPPs relies on data gained from 
experimental studies of CPPs. The HTS methods, at least in 
their first stages, requires testing of many peptide sequences 
and their properties, such as the capability of penetrating into 
cells. In the long term, the information gained from these 
laborious studies form the basis upon which new guidelines 
can be based on. HTS methods provide major advantages 
when screening vast numbers; however, the parameters 
must be chosen carefully and the limitations of each screening 
methods must be considered.

The Kodadek group uses a different HTS approach. They 
monitor the relative cell permeability of large numbers of 
compounds by tagging every molecule in the library with 
a dexamethasone derivative [84,85]. Only peptides that have 
entered the cells will be counted as hits.

The one-bead-one-compound (OBOC) combinatorial 
method can be used to screen membrane-active peptides. 
Although each tested peptide must be synthesized, the out-
put values can be ranked by intensity and enabling one to 
choose the most efficient peptide candidates. Libraries 
screened with this method can contain peptides with 
D-amino acids, and β-amino acids and the method can be 
used to test various internalization environments (e.g. pH, lipid 
composition). A large number of possible hits allow one to 
classify motifs within sequences that can be adjusted depend-
ing on the application (e.g. lower pH to mimic endosomal 
conditions and the capability of endosomal escape) [86].

3.2. In silico approaches

The vast majority of known cell-penetrating peptides are 
derived from known protein sequences. In the modern era of 
genomic sequencing researchers are provided with an enor-
mous amount of protein-encoding sequences that are impos-
sible to process manually, using trial and error wet-lab 
approaches. In contrast, in silico approaches are faster, 
cheaper, and less laborious. They allow one to conduct large- 
scale screenings and search for new CPPs that fulfill the needs 
of fundamental science and applied research fields such as 
biomedicine and pharmacology. As a recent example, an in 
silico method was used to screen the whole proteome of 
severe acute respiratory syndrome coronavirus 2 for CPPs [87].

3.2.1. In silico prediction of CPPs
Here we focus on in silico approaches used to predict CPP 
sequences. The CPP predictor construction usually contains 
three main stages.

1. The collection of datasets of proven CPPs and non-CPPs 
from the literature and/or databases. The data is usually 
split into two parts: a) the training set for algorithm 
learning, and b) testing set (aka independent set), 
which was not involved in the training process and is 
used to check the performance of the model.

2. Generation representative features that reflect different 
characteristics of selected peptides. These features may 
include AA composition, dipeptide composition, physi-
cochemical properties of AAs, peptide structure, or com-
binations of different features. The generated features 
are often optimized to select the most influential 
feature(s) and discard irrelevant ones.

3. Model development by providing this representation of 
selected features to a machine learning (ML) algorithm.

To evaluate the performance of the constructed model, and to 
compare between different models, four metrics are frequently 
used. These are Sensitivity (SN), Specificity (SP), Accuracy (ACC) 
and the Mathew correlation coefficient (MCC), as expressed in the 
following equations:

SN ¼ 100�
TP

TPþ FNð Þ

SP ¼ 100�
TN

TNþ FPð Þ

ACC ¼
TPþ TNð Þ

TPþ TNþ FNþ FPð Þ

MCC ¼
TP � TNð Þ � FP � FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p

Footnote to equations: TP, TN, FP, FN denote the true posi-
tives, true negatives, false positives, and false negatives. SN 
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and SP are the rate of true positives and true negatives. ACC is 
the ability of the model to differentiate between true positive 
and true negative and MCC is a correlation coefficient 
between observed and predicted. The value range of MCC 
holds between −1 and 1. In case of perfect prediction, the 
coefficient is 1, when coefficient is 0 the prediction is not 
better than random guess and −1 is total disagreement 
between observed and predicted.

The creation of a CPP prediction model is a complicated, 
multistep iterative process with several pitfalls that must be 
avoided. Firstly, the creation of datasets. Usually, they are split 
into two uneven parts: the first is used for training of the 
classifier or algorithm, and second – an independent (valida-
tion) dataset – is used to test the performance of resulting 
model. In general, the datasets should contain a sufficient 
number of diverse peptides, while avoiding redundant pep-
tides. This works to limit overfitting of the model to the 
training dataset. In addition, the training set should be 
balanced and contain an even number of positive (CPPs) and 
negative (nCPPs) sample. Using unbalanced datasets 
decreases the accuracy of the resulting model. Initially, vali-
dated CPPs were scrupulously picked from literature; however, 
since 2012, a publicly available database of experimentally 
verified CPPs – CPPsite, can be used as the source of CPP 
information. It was upgraded to CPPsite 2.0 over time [11] 
and it currently contains more than 1800 entries.

The information stored in the CPP sequence is of key 
importance. The feature representation method reveals the 
stored information to a machine learning algorithm. In the 
beginning, the first models used single type of features that 
were based on AA physico-chemical properties [87;88] and 
biochemical properties [88,89]. Further works started using 
different features and their combinations. The most widely 
used features, in addition to the aforementioned, are the 
composition of the AA and dipeptide, pseudo AA composition 
(pseAAC) and motif-based features [89–93]; their mergers and 
application to machine learning algorithm in various combina-
tions (hybrid features) has been shown to be the most effi-
cient strategy. The efficiency of this hybrid approach is due to 
its overwhelming nature: the combination of the most influ-
ential prediction feature types. This approach will be the 
standard for CPP prediction models, until the understanding 
of the peptide uptake mechanism becomes clearer.

Machine learning algorithms are widely used in the field of 
CPP prediction. The selected features are presented to an ML 
algorithm that generates a predictive model. The most widely 
used methods for this purpose are support vector machine 
(SVM), random forest (RF), and the use of artificial neural net-
works (ANN). The SVM method creates a high dimensional 
space and finds a separation hyperplane that maximizes the 
distance between two classes of features [94]. The trained 
algorithms demonstrate accuracies between 81%-91% 
[89,90,95]. ANN-based algorithms are algorithmic models that 
simulate the structure of the brain to process information. The 
two examples of NN mentioned in this work [89; 97] perform 
with similar accuracies (83%). The most widely applied algo-
rithm in CPP prediction is RF which generates the number of 
decision trees trained on the subset of information and the 
final result is determined by a combined total score of all 

decision trees [96]. The accuracies of RF-based methods are 
around 90% [91,92,97–99]. During the last several years, in 
pursuit of increased predictive power, CPP prediction models 
based on other algorithms have appeared. Manavalan et al 
[100,101] developed a two-layer method that first used extre-
mely randomized trees (ERT) method [102] to predict the CPP 
and then a second-layer RF-based prediction is used for 
uptake efficiency prediction [100]. Pandey et al developed 
a model based on a kernel version of extreme learning 
machine (ELM) algorithm [102,103] and more recently, 
a method [89] based on gradient boost decision trees [104]. 
All three methods demonstrate comparable accuracies with 
state-of-art models (89.6%, 86.2%, 88.5%).

Because there are several approaches to developing com-
putational methods for predicting CPP sequences, it is impor-
tant to have some background on each in order to choose the 
one most suitable for the application. The first CPP prediction 
method was an algorithm based on z-scales [105]. The z-scales 
were initially calculated by Hellberg et al [106] for 20 coding 
AA. This idea was expanded and developed further, which led 
to the generation of z-scales for 87 AA (including non-coding 
AAs) based on their different physicochemical properties [107]. 
The bulk property values (ZΣ/n) of every peptide in the set of 
24 published CPPs and 17 non-CPPs (nCPP) were used for 
training the algorithm [108]. Further [109], z-descriptors were 
subjected to partial least squares and principal component 
analysis (PCA). The amount of CPPs and nCPPs in the training 
set increased to 85. These models allow one to predict poten-
tial CPP sequences from whole protein sequences.

Several new machine learning-based CPP prediction algo-
rithms have been developed in the last decade. In 2010, an 
ANN for CPP prediction was developed [88]. For this study, 101 
CPPs were selected and >250 molecular features were generated 
for every peptide. Out of these, the six most influential were 
chosen as input data for ANN. Part of the dataset (30) was used 
to validate the performance of the ANN, and showed 83% 
accuracy. Further manipulations with dataset and improvements 
of the model resulted in almost 100% prediction accuracy.

Another machine learning related approach, SVM, was 
introduced for CPP prediction [89]. The work included 111 
CPPs and 34 nCPPs. Basic biochemical properties (number of 
AAs, peptide length, net charge etc.) were generated for each 
peptide, and various combination of the properties were 
applied to train the SVM. The problems presented by this 
unbalanced dataset (CPP≫nCPP) was overcome by increasing 
the negative set with randomly generated nCPPs. The predic-
tion accuracy of the algorithm increased to 91.7%. 
Furthermore, SVM models based on the AA position in the 
CPP sequence and AA motifs, have been developed and used 
together with much larger data sets (708 CPPs) [90]. The best 
SVM model outperformed all previously reported models on 
their datasets; however, the maximum accuracy of the most 
productive model when applied to an independent dataset 
was 81.3%. The algorithms developed in this study can be 
found as a web tool under the name CellPPD.

In 2013, another example of using ANN to predict CPPs was 
presented [110]. For the training of N-to-1 network, they used 
the datasets from [89]. All redundant peptides were eliminated 
to avoid overfitting and improved the predictive power of the 
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model. The advantage of N-to-1 NN over frequency-based 
methods is that it takes into account the entire motif and 
relative position of the AA in the sequence. The prediction 
accuracy of this model was 83%.

The repertoire of machine learning methods used for CPP 
prediction was enlarged by Chen et al [99]. The peptides from 
various previously published sources were encoded by 
pseAAC [111] representing many AA features. The most influ-
ential features were selected by a minimum redundancy max-
imum relevance (mRMR) method [112], the optimal prediction 
method and the set of optimal combination of features were 
found using an incremental feature selection (IFS) method and 
random forest (RF) classifier. The resulting prediction accuracy 
using this method was 83.5%.

The predictive power of algorithms has improved and 
further training sets have been added to predict multifunc-
tional peptides. The first two-layer prediction algorithm [91] 
was created by training the RF algorithm on CPP and nCPP 
sets to predict whether any given sequence is a CPP (ACC 
91%) and also how efficient its uptake is (ACC 66%). This 
trained algorithm was used to develop a new approach to 
design multifunctional CPPs with compatible activities. 
Furthermore, information about the residue order was pre-
sented to the algorithm in the form of dipeptides instead of 
just the AA composition [95]. The most efficient dipeptide 
features were selected by an analysis of variance (ANOVA) 
based technique and used to train an SVM algorithm. The 
resultant method was examined using ten-fold cross- 
validation (CV) and provided a maximum ACC of 83.6%.

The next aspects that were focused on to improve the 
performance of machine learning was the improvement of 
feature representation and selection methods [92]. For this, 
four feature descriptors were employed that enabled one to 
generate an enormous amount of features, and more impor-
tantly, rank them by using mRMR method. The optimal feature 
subset from this ranking was selected by Sequential Forward 
Search (SFS) and used to train an RF algorithm. The highest 
accuracy achieved by this method for CPP prediction was 
91.6%. It is important to note that this method, available 
online as CPPred-RF is a two–layer method that also predicts 
the efficiency CPP uptake with 77% accuracy. The same 
authors published another publicly available prediction 
model (SkipCPP-Pred; accuracy 90.6%) [97] where the peptide 
sequence is processed by a k-skip-n-gram model which pro-
vides its resulting vector to an RF algorithm.

Another two-layer prediction framework that has been 
developed is termed MLCPP [100]. Four different types of 
features were extracted from the peptides and analyzed by 
an SVMQA method [113]. The most effective set of features 
was generated and presented to four different machine learn-
ing algorithms. Out of these, two showed the best scores: RF 
and extremely randomized trees (ERT, a variation of RF). The 
ERT outperformed other methods as the first layer predictor 
(CPP vs nCPP) and RF was selected as the second layer pre-
dictor (low vs high uptake). When tested on an independent 
dataset, MLCPP outperformed all the state-of-art methods of 
both algorithms with accuracies of 89.6% and 72.5%.

The majority of known CPPs contain only encoded AAs, 
however, various modifications to these CPPs are commonly 

used in their design and development. Kumar et al [98] used 
different structural information acquired from tertiary struc-
tures of known peptides to develop a method capable of 
predicting CPPs from modified peptides. RF displayed the 
best performance compared with other machine learning 
algorithms providing an ACC of 92.3%. The CellPPDMod server 
that utilizes this model could assist researchers in the design 
of CPPs that have various modifications and help to assess the 
influence of these modifications on the uptake of the peptide. 
Not only does optimizing the selection procedure for finding 
the most representative features help to improve the CPP 
prediction model efficacy, but also, as shown by the authors 
of KELM-CPPpred web server [102], utilization of a kernel ver-
sion of extreme learning machine (ELM) algorithm [103]. In 
total, six types of features were used to train the algorithm. 
The resultant average accuracy obtained by 10-fold CV was 
86.2% and 83.1% when tested on an independent dataset.

Currently, TargetCPP is the latest CPP prediction framework 
published [93]. The method utilizes a hybrid feature set composed 
of four representative groups that are selected by an mRMR 
selection algorithm and presented to a Gradient boost decision 
tree (GBDT) algorithm. The model obtained an accuracy of 88.3% 
and MCC 0.675 when tested on an independent data set. 
Summary of prediction programs and links (if appliccable) are 
shown in Table 2.

3.2.2. Models and simulations of CPP-membrane 
interactions
Membranes consist of hundreds of different lipids and are 
crowded with proteins, creating distinct areas over the mem-
branes that lead to processes such as membrane fusion, protein 
trafficking, signal transduction, and entry of therapeutics. Various 
computational methods have dramatically reduced the time and 
cost of drug discovery [114]. Molecular dynamics (MD) is 
a technique of computer simulations capable of describing the 
interactions between all the components in the system at atomic 
resolution, acting like a ‘computational microscope.’ The first MD 
simulations of surfactants and lipids appeared in the 1980s, and 
today they have a growing range of applications, including simu-
lations of pore formation by AMPs, interactions with membrane- 
active peptides, and CPPs [115–117]. MD simulations have been 
used to describe the entry of arginine-rich CPPs [118] and HIV-1 
Tat peptide [119], AMPs [120], and Spontaneous Membrane 
Translocating Peptides [116]. It has great potential as a large- 
scale computational screening of peptides and elucidation of 
their entry mechanism.

3.3. Combined approaches

In silico methods and experimental methods can be combined 
to find new CPPs by using the best of both approaches. 
Experimental data can confirm the predicted CPP activity 
and in silico predictions or data analysis can help to reduce 
both manual work and bias.

3.3.1. Synthetic molecular evolution
Synthetic evolution uses, by definition, modern molecular and 
synthetic biology approaches to iterate diversity and select 
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desired functions of phenotypes [121]. With slight modifica-
tions, it can be applied to find new CPPs, by starting with 
known sequences, and screening libraries orthogonally for 
members that have a set of desired properties. After each 
set of gain-of-function peptides is selected for the next 
round of screening, so the next generation of sequences will 
have a more refined set of properties that one is seeking [122]. 
It has been used to select of new pore-forming peptides [122], 
hybrid CPPs [123], and AMPs [124]. The main advantage of this 
approach is that after each round peptides are experimentally 
tested and the most efficient peptides are taken as input for 
next library screening round.

3.3.2. Protein mimicry
Protein mimicry is an approach where peptides with the func-
tion of the original protein are used to influence protein 
interactions by inhibition or activation. Proteins and their 
interactions are essential components of normal cellular pro-
cesses, and aberrations in their interactions or functions may 
cause disease states. Modulation of cellular processes through 
influencing these protein–protein interactions has the poten-
tial to restore normal cellular functions [125], or to help inves-
tigate these processes in the cells. Designing new protein 
mimicry CPPs, is an attractive approach, because it addresses 
both internalization and bioactivity. Various tools can be used 
to aid in selecting possible protein–protein interaction pep-
tides from different databases, such as BioGRID [126], and 
PinaColada [127], or PepCrawler [128]. Additional approaches 

are also used in CPP discovery, such as phage display, HTS, 
and rational design [129]. The peptide sequences can be 
designed into CPPs or be additionally screened for their ability 
to penetrate cell membranes. The term ‘bioportide’ was intro-
duced to distinguish between CPPs and bioactive CPPs. For 
example, the peptides camptide, and nosangiotide have both 
CPP activity and bioactivity [130].

4. Conclusions

The discovery of new and efficient CPPs for research, thera-
peutic, and diagnostic applications remains a challenge. Over 
the years, several approaches have been developed and 
adopted from other fields to find new CPPs. According to 
the level of experience, input information, and desired output, 
one can choose between experimental, in silico, or combined 
approaches.

Experimental approaches require a less previous back-
ground in the CPP field, and lead to more success in its refined 
form. However, experimental approaches are laborious and 
require the synthesis and testing of each candidate. 
Nevertheless, direct experimentation enables one to collect 
new data that can help improve both rational design and in 
silico approaches. In addition, experimentation encourages 
CPP findings that are not limited to rules that apply only to 
known CPPs. New and efficient HTS methods would signifi-
cantly contribute to the development of other approaches.

Table 2. Prediction methods are presented in this work and their features.

Predictor 
name Feature representation/selection/classifier ACC MCC

Uptake 
(ACC) Modifications Reference Accessible

N.A. Z-scales of the physicochemical descriptors, PCA for descriptor selection 77% N.A. N.A. Yes [105] No
N.A. Z-scales of the physicochemical descriptors, PCA for descriptor selection, PLS 68% N.A. N.A. Yes [109] No
N.A. Molecular features, PCA for descriptor selection. ANN conjoined with QSAR 83% N.A. N.A. N.A. [88] No
N.A. Biochemical and physicochemical properties. SVM algorithm, 10-fold CV 91.7% N.A. N.A. N.A. [89] No
CellPPD AA composition, physicochemical properties, pattern profiles and motifs, SVM 

algorithm
81.3% 0.63 N.A. N.A. [90] yes

CPPpred Motif information, N-to-1 neural network 83% 0.69 N.A. N.A. [110] Currently 
unavailable

N.A. Presentation of CPP using pseAAC, analysis of features and models by mRMR 
and IFS. RF algorithm.

83.5% 0.49 N.A. N.A. [99] no

N.A. AA frequencies and physicochemical properties, RF algorithm 91% N.A. 66% N.A. [91] no
C2Pred Dipeptides, Analysis of variance based technique (ANOVA), SVM algorithm, 

5-fold CV.
83.6% N.A. N.A. N.A. [95] yes

CPPred-RF Four feature descriptors, feature selection mRMR and SFS, RF algorithm. 
Jackknife test validation.

91.6% 0.83 71.1% N.A. [92] yes

SkipCPP- 
Pred

Adoptive k-skip-n-gram feature, RF algorithm, jackknife CV 90.6% 0.81 N.A. N.A. [97] yes

MLCPP Four feature descriptors, feature selection by SVMQA, 10-fold CV. 1st layer – 
ERT and 2nd layer – RF algorithm

89.6% 0.79 72.5% N.A. [100] yes

CellPPDMod Features from peptide structures and AA composition, RF algorithm. 92.3% 0.85 N.A. Yes [98] yes
KELM- 

CPPpred
Six feature descriptors, Kernel-ELM algorithm, 10-fold and jackknife CV 83.1% 0.67 N.A. N.A. [102] yes

TargetCPP Four feature descriptors, selection by mRMR, GBDT algorithm 88.5% 0.68 N.A. N.A. [93] Currently 
unavailable

Predictor name – Name of the predictor given by authors. 
Feature representation/selection/classifier – Features, approaches and algorithms used by authors to develop the models. 
ACC – model prediction accuracies. Accuracies in the table are taken from the original articles as the authors declared and if possible from the results obtained from 

independent (validation) datasets were chosen. Note that comparisons between the performance of some methods not utilized in the original studies are 
sometimes biased due to the reasons discussed in [20]. 

The MCC – Matthews correlation coefficient represents the correlation between observed and predicted. When the prediction is perfect it is value is 1, if the 
coefficient is 0 the prediction is not better than random guess and −1 means total disagreement between observed and predicted. 

Uptake (ACC) – Some models allow one to predict the uptake efficiency of predicted peptides. The numerical values represent the accuracy of this prediction. 
Modifications. – Some models allow one to work with chemically modified peptides that contain non-coded peptides or other modifications in their sequences 
Accessible – whether the model is accessible online to the general public 
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In silico approaches rely both on the previous knowledge 
and databases or libraries of CPPs. While several accessible 
prediction sites exist, they nevertheless fall short when more 
complicated modifications are included or several traits are 
simultaneously investigated. Display approaches encourage 
one to find new CPPs with higher specificity, but this is 
strongly depended on the quality of display.

Although several approaches are available, the discovery 
and design of new CPPs is complicated and requires integrat-
ing previous knowledge with novel propositions. Currently, no 
single approach can guarantee success, yet new CPPs are 
found each year. With an increase in the number of known 
CPPs, and the development of new approaches, it is likely that 
new guidelines for discovering novel CPP sequences will 
appear.

5. Expert opinion

Currently, there are no strict guidelines for the successful 
selection of sequences that can cross cell membranes. 
Nevertheless, substantial progress has been made in develop-
ing in silico approaches that predict potential sequences and 
these have been used in the search for new CPPs. Although 
the prediction algorithms are trained on known CPP 
sequences, and this may create a bias in selection, it enables 
one to scan through large libraries that would otherwise be 
unsurmountable for traditional wet-lab approaches. Today, the 
main approaches display varying degrees of success for CPP 
discovery. These include a) educated guess integrated with 
trial and error and rational design, b) prediction of new CPPs 
from protein sequences or peptides, c) peptide sequences 
found from HTS approaches and display methods.

Trial and error, although primitive in its nature, have still 
maintained its position for finding new CPP sequences. It is 
laborious and costly, and requires synthesis and experimental 
testing of each candidate; however, it enables one to collect 
background data that can be used to improve HTS 
approaches. It is possible to outsource peptide synthesis; 
therefore, this approach does not require specific equipment 
or facilities. Cell-penetration of the peptide may be registered 
as an anomaly in one experiment, and further investigation 
leads to the discovery of a new CPP. In other cases, based on 
its sequence, structure, or protein function, a part of a protein 
is synthesized and tested for internalization. Going one step 
further, in an attempt to find the underlying rules that define 
efficacy, rational design is applied. In rational design, the 
success rate strongly relies on the knowledge of the 
researcher. It requires a heightened awareness of how CPPs 
work, what components are necessary to add to the sequence, 
and how and where to introduce the modification. In rational 
design, the number of possible candidates is reduced, based 
on an educated guess or other indications. Often rational 
design is accompanied with trial and error, as the efficacy of 
the CPP relies not only on the primary structure, but also 
several chemical and physio-chemical properties. The charge, 
chirality, aromatic and hydrophobic content and their co- 
action are often unpredictable. In silico approaches help to 
reduce the number of unsuccessful candidates and screen 
through more peptide sequences before synthesis and testing. 

There are several prediction platforms accessible online and 
upon request for screening from the authors. The predictions 
use different algorithms, which also influences their accuracy. 
Predictions are trained on known CPP sequences, which con-
sequently may introduce selection bias. The success of in silico 
methods is strongly connected with the experimental data 
that has been collected and the other content within the 
CPP databases. The prediction itself does not require thorough 
knowledge from the user, and the output is quite easy to 
comprehend. Display methods allow one to screen possible 
candidates and select the ones with desired traits; however, 
this approach has several limitations, such as size, and require 
experience in the display method itself. Phage display is espe-
cially advantageous when one needs to scout tissue specificity 
in addition to cell internalization. In addition to display meth-
ods, other HTS approaches have been developed. 
Nevertheless, they are not widely used, due to their unavail-
ability, elaborate setup, or other special requirements. There 
are several approaches for discovering and designing new 
CPPs, however, there is a need to devise higher throughput 
approaches that are more user-friendly, versatile, and can 
account for the inclusion of modifications.

Although there are several in silico methods that have been 
developed, discovering new, fully unique CPPs often begins 
with educated guess accompanied with serendipitous obser-
vations from typically unrelated experiments. Wet lab testing 
of known CPPs, investigating their physiochemical properties 
and interactions is the basis upon which rational design is 
built. This, hopefully, will lead to new approaches that enable 
screening of peptides or protein sequences for specific and 
efficient CPPs for each unique application. Development of 
new, more efficient, and accurate HTS methods could signifi-
cantly increase the versatility and applicability of CPPs both as 
delivery vectors and as direct therapeutics. Data collected by 
HTS approaches and improved databases could enable even 
more accurate and diverse predictions, with more refined 
screening. Today, more and more researchers use available 
prediction programs to screen through their potential 
sequences before testing. This is encouraged, but again, may 
restrain further discovery of fully unique CPP sequences that 
do not fall into the same categories as know CPPs. Today, 
finding sequences with internalization properties only, is not 
enough. The sequence itself should be able to target specific 
tissues (e.g. targeting) or modulate processes (e.g. protein 
mimicry) within the cells. The search for multifunctional CPPs 
even more strongly necessitates the development of diverse 
HTS approaches that can account for modifications.
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