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7.1.6 Batteries

The command module was completely powered down at 58 hours U4O minutes,
at which time 99 ampere-hours remained in the three entry batteries. By
charging the batteries with lunar module power, available battery capacity
was increased to 118 ampere-hours. Figure T7.1-1 depicts the battery energy
available and used during entry. At landing, 29 ampere-hours of energy
remained.
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7.2 LUNAR MODULE

Following lunar module power-up, oxygen, water, and battery power
were consumed at the lowest practical rate toc increase the duration of
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7.1.3 Cryogenic Fluids

Cryogenic oxygen and hydrogen usages were nominal until the time
of the incident. The pressure decay in oxygen tank 2 was essentially
instantaneous, while oxygen tank 1 was not depleted until approximately
2 hours following the incident. Usages listed in the following table
are based on an analysis of the electrical power produced by the fuel
cells.

Hydrogen, 1b Oxygen, 1b
Avallable gt 1lift-off
Tank 1 29.0 326.8
Tank 2 29.2 327.2
Totals 58.2 654 ,0
Consumed
Tank 1 T.1 71.8
Tank 2 6.9 85.2
Totals 4.0 157.0

Remaining at the time
of the incident

Tank 1 21.9 255.0
Tank 2 22.3 242.,0
Totals by, 2 hg7.0

7.1.4 Oxygen

Following the incident and loss of pressure in tank 1, the total
oxygen supply consisted of 3.77 pounds in the surge tank and 1 pound in
each of the three repressurization bottles. About 0.6 pound of the oxy-
gen from the surge tank was used during potable water tank pressuriza-
tions and to activate the oxygen system pricr to entry. An additional
0.3 pound was used for breathing during entry.

T.1.5 Water

At the time of the incident, about 38 pounds of water was available
in the potable water tank. During the abort phase, the crew used juice
bags to ftransfer aspproximately 14 pounds of water from the command module
to the lunar module for drinking and food preparaticon.
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operate the reaction control hesters and telemetry equipment. The esti-
mated total energy transferred to the command module was approximately

129 ampere hours. A total of 410 ampere hours remained in the lunar mod-
ule batteries at the time of undocking.
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gravel and dust stirred up by the exhaust of the launch vehicle engine.
After launch, a quantity of such debris was found near the surface of the
field meter and its surrounding area. After the oscillations had subsided
at T plus 40 seconds, there was a large negative field of approximately
minus 3000 volts/meter which probably resulted from the exhaust and steam
clouds that tended to remain over site 6.

Because of access restrictions to sites 8 and 9, the corresponding
recorders were started several hours prior to launch and unfortunately
had stopped before lift-off. However, substantial positive and negative
field perturbations found on the stationary parts of the records were
greater than anything found on the moving portion. Comparison of these
records with those from sites 6 and 7 confirmed that the only large field
perturbations were those accompanying launch. Consequently, the peak
excursions of the records at sites 8 and 9 could be confidently associated
with the maximum field perturbations occurring just after 1lift-off.
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No gignificant perturbation in the electric field was preduced by
the launch cloud at stations 4 or 5, although small-scale fluctuations,
apparently resulting from vibrations, can be seen on the records of the
fine weather field at both stations.

The field-change and sferics detectors at site 5 gave no indication
of any lightning-like discharge during launch, although sporadic signals
were later recorded during the afternocon of launch day. These signals
probably came from lightning in a cold front which was stalled some dis-
tance to the northwest of the launch site and which passed over the
launch site on April 12.

The above field meter records indicate the launch of the Apollo 13
vehicle produced a significant separation of electrical charge which
could possibly inecrease the hazard in an otherwise marginal weather
situation. At the present time the location and amount of the charge on
the vehicle or exhaust clouds or a combination thereof are not well under-
stood.
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It is known that the electrostatic potentials develop on jet air-
craft. These are caused by an engine charging current, which is balanced
by a corona current loss from the aircraft. TFor a conventiocnal jet air-
craft, the equilibrium potential can approach a million volts. TFor the
Saturn V launch vehicle, the charging current may be larger than that of
a jet aircraft, and therefore, the equilibrium potential for the Saturn
vehicle might be on the order of a million volts or more.



TABLE E~I.- MISSION REPORT SUPPLEMENTS - Concluded

Supplement . Publication
nunmber Title date/status
Apolio 12
1 Trajectory Reconstruction and Analysis September 1970

2 Guidance, Navigation, and Control System September 1970
Performance Analysis

3 Service Propulsion System Final Flight Preparation
Evaluation .

i Ascent Propulsion System Final Flight Preparation
Evaluation

5 Descent Propulsion System Final Flight Preparation
Evaluation

6 Apcllo 12 Preliminary Science Report July 1970

7 Landing Site Selection Processes Final review

Apollo 13

1 Guidance, Navigation, and Control Systenm Review
Performance Analysis

2 Descent Propulsion System Final Flight Preparation
Evaluation

3 Cancelled

Entry Postflight Analysis




TABLE E-I.- MISSION REPORT SUPPLEMENTS - Continued

E-3

Supplement . Publication
number Title date/status
Apollo 10
1 Trajectory Reconstruction and fnalysis March 1970
2 Guidance, Navigation, and Control System December 1969
Performance Analysis
3 Performance of Command and Service Module Final review
Reaction Control System
b Service Propulsion System Final Flight September 1970
Evaluation
5 Performance of Lunar Module Reaction Control Final review
System .
6 Ascent Propulsion System Final Flight January 1970
Evaluation
T Descent Propulsion System Final Flight January 1970
Evaluation
8 Cancelled
9 Analysis of Apollo 10 Photography and Visual In publication
Observations
10 Entry Postflight Analysis December 1969
11 Communications System Performance December 1969
Apollo 11
1 Trajectory Reconstruction and Analysis May 1970
2 Guidance, Navigation, and Control System September 1970
Performance Analysis
3 Performance of Command and Service Module Review
Reaction Control System
i Service Propulsion System Final Flight Review
Evaluation
5 Performance of Lunar Module Reaction Control Review
System
6 Ascent Propulsion System Final Flight September 1970
Evaluation
T Descent Propulsion System Final Flight September 1970
Evaluation
8 Cancelled
9 Apollo 11 Preliminary Science Report Decenber 1969
10 Communications System Performance January 1970
11 Entry Postflight Analysis April 1970
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1.0 SUMMARY

The Apolloc 13 mission, planned as a lunar landing in the Fra Mauro
area, was aborted because of an abrupt loss of service module cryogenic
oxygen assoclated with a fire in one of the two tanks at approximately
56 hours. The lunar module provided the necessary support to sustain a
minimum operational condition for a safe return to earth. A circumlunar
profile was executed as the most efficient means of earth return, with
the lunar module providing power and life support wntil transfer to the
command module just prior to entry. Although the mission was unsuccess-
ful as planned, a lunar flyby and several scientific experiments were
completed.

The space vehicle, with a crew of James A. Lovell, Commander;
Fred W. Haise, Jr., Lunar Module Pilot; and John L. Swigert, Jr., Com-
mand Module Pilot; was launched from Kennedy Space Center, Florida, at
2:13:00 p.m. e,s.t., {19:13:00 G.m.t.) April 11, 1970. Two days before
launch, the Command Module Pilot, as a member of the Apollo 13 backup
crew, was substituted for his prime crew counterpart, who was exposed
and found susceptible to rubella (German measles). Prior to lauwnch, a
network of meters was installed in the viceinity of the launch site to
measure electrical phenomena associated with Saturn V ascent in support
of findings from the Apollo 12 lightning investigation; satisfactory data
were obtained. During S-II stage boost, an automatic shutdown of the
center engine occurred because of a divergent dynamic structural condi-
tion associated with that engine. Soon after the spacecraft was ejected,
the 5~-IVB was maneuvered so as to impact on the lunar surface and provide
seismological data. Following this maneuver, a series of earth photo-
graphs were taken for later use in determining wind profiles in the upper
atmosphere. The first midcourse correction inserted the spacecraft into
a non-free-return trajectory.

At approximately 56 hours, the pressure in cryogenic oxygen tank 2
began to rise at an abnormally high rate and, within about 100 seconds,
the tank abruptly lost pressure. The pressure in tank 1 also dropped
but at a rate sufficient to maintain fuel cell 2 in operation for approx-
imately 2 more hours. The loss of oxygen and primary power in the service
module required an immediate sbort of the mission. The crew powered up
the lunar module, and the first maneuver following the incident was made
with the descent propulsion system to place the spacecraft once again on
a free-return trajectory. A second maneuver performed with the descent
engine 2 hours after passing pericynthion reduced the transearth transit
time and moved the earth landing point from the Indian Ocean to the South
Pacific. Two small transearth midcourse corrections were required prior
to entry.
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The lunar module was jettisoned 1 hour before entry, which was
performed nominally using the primary guidance and navigation system,
Landing occurred at 142:54:41 within sight of the recovery ship. The
landing point was reported as 21 degrees 38 minutes 24 seconds south
latitude and 165 degrees 21 minutes 42 seconds west longitude. The crew

were retrieved and aboard the recovery ship within 45 minutes after land-
ing.



2.0 INTRODUCTION

Apollo 13 was the thirteenth in a series of missions using Apollo
specification flight hardware and was to be the third lunar landing.
The primary mission objective was a precise lunar landing to conduct
sclentific exploration of deep-rooted surface material .

Because an inflight anomaly in the cryogenic oxygen supply required
an abort of the mission prior to insertion into lunar orbit, discussions
of systems performance only relate to the sbort profile and the system
configurations required as a result of the emergency. A complete dis-
cussion of the anomaly is presented in reference 1, and the abort profile
is described in section 3. Because of the added eriticality of onboard
consumables, a discussion of usage profiles in both vehicles is contained
in section 7.

A complete analysis of all flight data is not possible within the
time allotted for preparation of this report. Therefore, report supple-
ments will be published for certain Apollo 13 systems analyses, as shown
in appendix E. This appendix also lists the current status of all Apollo
mission supplements, either published or in preparation. Other supple-
ments will be published as the need is identified.

In this report, all actual times prior to earth landing are elapsed
time from range zerc, established as the integral second before 1ift-off.
Range zero for this mission was 19:13:00 Gom.t., April 11, 1970. All
references to mileage distance are in nautical miles.



3.0 MISSION DESCRIPTION

The Apollo 13 mission was planned as a precision lunar landing in
the Fra Mauro highiands., The most significant changes to the planned
mission profile from Apcllo 12 were the maneuver to impact the depleted
5-IVB stage on the lunar surface and the performance of descent orbit
insertion using the service propulsion system. The S-IVB impact was in-
tended to provide seismological datsa sensed by the instrument left on
the moon during Apollec 12. Performance of the descent orbit insertion
using the service propulsion system provides a greater propellant margin
in the lunar mcodule descent propulsion system, and this reserve would
have been available during the critical precision landing phase.

Because of a sudden loss of pressure abt approximately 56 hours from
one of the two service module cryogenic oxygen tanks in bay 4, primary
electrical power was lost and the mission was sborted. Therefore, the
remainder of this section will consider only the abort profile, since
the trajectory prior to the tank incident was nearly identical to that
of Apollo 12, including the first midcourse maneuver to a non-free-return
profile, as shown in figure 3-1. The major tralectory difference from
Apollo 12 resulted from an early shutdown of the center engine in the
8-11 stage of the Saturn V, the subsequent staging and insertion times
were scmewhat later than planned. A listing of significant mission events
is contained in table 3-I,

NASA-5-70-5824

Y ~ o
Fourth Third @

§- T B impact

midcourse midcourse
Earth correction cotrection
parking
orbit
_.-—‘-'-.—"'

Second midcourse \
— correction to enter
a free-return

Lunar
module
jettison

First midcourse

correction to enter

non-free-return
Landing L S-T¥ B maneuver
to lunar impact

Translunar
injection

Moon at
{ife-off

Figure 3-1.- Apollec 13 mission profile.



TABLE 3-I.~ SEQUENCE CF EVENTS

Bent hr:iizfgec

Range zero - 19:13:00:00 G.m.t., April 11, 1970

Iift-off - 19:13:00.65% G.m.t., April 11, 1970

S-IC outboard engine cutoff 00:02:L4%
S-I1 engine ignition (command time) 00:02:45
Launch escape tower jettison 00:03:21
S5-1I1 engine cutoff 00:09:53
S-IVB engine ignition (command time) 00:09:54
S5-1IVB engine cutoff 00:12:30
Translunar injection maneuver 02:35:46
S-IVB/command and service module separation 03:06:39
Docking 03:19:09
Spacecraft ejection ok:01:01
S-IVB separation maneuver 0h:18:01
First midcourse correction (service propulsion) 30:40:50
Cryogenic oxygen tank incident 55:54:53
Second midcourse correction (descent propulsion) 61:29:43
S-IVB lunar impact T7:56:40
Transearth injection {descent propulsion) 79:27:39
Third midcourse correction (descent propulsion) 105:18:28
Fourth midcourse correction (IM reaction control) 137:39:52
Command module/service module separation 138:01:48
Undocking 141:30:00
Entry interface 142:40:46
Landing 1h2:54: 41
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After powering up the lunar module, co-aligning the two platforms,
and shutting down all command and service module systems following the
tank anomaly, a maneuver was immediately performed to return the space-
craft to a free-return profile. The maneuver was performed as the second
midcourse correction, using the descent propulsion system in the docked
configuration, a mode tested successfully during Apollo 9. The resultant
landing at earth would have been at 152 hours in the Indian Ocean, with
lunar module systems intended to support the crew for the remaining 9C
hours. Because consumables were extremely marginal in this emergency
mode and because only minimal recovery support existed at this earth
landing location, a transearth injection maneuver using the descent pro-
pulsion system was planned for execution 2 hours after passing pericyn-
thion. Between these two maneuvers, an alignment check was made of the
lunar module inertial platform to verify the maneuver would be executed
with sufficient accuracy to permit a safe earth entry.

The transearth injection maneuver was performed on time, and the
transearth coast time was shortened such that landing was to occur st
about 1h3 hours in the South Pacific, where primary recovery support was
located. Guidance errors during this maneuver necessitated a small mid-
course correction at about 105 hours to return the projected entry flight
path angle to within specified limits. Following this firing, the space-
craft was maneuvered into a passive thermal control mode, and all lunar
module systems were powered down except those absoclutely required to sup-
port the crew. A final midcourse correction was performed 5 hours before
entry to raise the entry flight-path angle slightly, and this maneuver
was performed using the lunar module reaction control system under abort
guldance control.

The service module was separated L-3/4 hours before entry, affording
the crew an opportunity to observe and photograph the damaged bsy L area.
The command module was separated from the service module by using the
lunar module reaction contrel system, The lunar module was retained for
as long as possible to provide maximum electrical power in the command
mecdule for entry.

The command module was powered up with the three entry batteries,
wnich had been brought up to nearly full charge using lunar module power.
Tne command module platform was aligned to the lunar module platform, and
the spacecraft were undocked 70 minutes before entry. After undecking,
the escaping tunnel pressure provided the necessary separation velocity
between the two spacecraft. From this polnt, the mission was completed
nominally, as in previcus flights, with the spacecraft landing approxi-
mately 1 mile from the target point. The lunar module, including the
radiclisctope thermoelectric fuel capsule used to power experiment equip-
ment, entered the atmosphere and impacted in the open sea between Samoa
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end New Zealand at 25.5 degrees south latitude and 176 degrees west lon-
gitude, with surveillance aircraft in the area. The three crewmen were
onboard the recovery ship, USS Iwo Jima, within 45 minutes of landing,
the fastest recovery time for all Apollo manned flights. A narrative
discussion of the flight and associated crew activities is presented in
section 8.0 as a complementary description to this section.



4.0 TRAJECTORY

The planned trajectory profile was similar to that for Apollo 12
except for descent orbit insertion being performed with the service pro-
pulsion system and the targeting of the spent S-IVB stage for a lunar
impact. The trajectory had been very close to the nominal flight plan
up to the time of abort, which was the first in the Apollo program.
Throughout the manned space program, techniques have been developed and
tested for the real-time determination of immediste abort requirements ,
but Apollo 13 presented the first situation in which their use was neces-
sary. Figure 3-1 shows the mission profile, including the relative loca-
tions of all major maneuvers.

The analysis of the trajectory from 1ift-off to spacecraft/S-IVB
separation was based on launch vehicle onboard data, as reported in ref-
erence 2, and from network tracking data. After separation, the actual
trajectory information was determined from the best estimated trajectory
generated from tracking and telemetry data. The earth and moon models
used for the trajectory analysis are geometrically similar to those used
for Apollo 12. Table 3-I is a listing of major flight events, and table
L-T defines the trajectory and maneuver parameters listed in table L-II.

The planned launch and earth parking orbit phases for this mission
were very similar to those for Apollo 12, However, during the second
stage (S-II) boost into the planned 100-mile circular parking orbit, the
center engine cut off about 132 seconds early and caused the remaining
four engines to burn approximately 3L seconds longer than predicted {as
discussed in section 13.0 and reference 2). Space vehicle velocity after
5-II boost was 223 ft/sec lower than planned, and as a result, the S-IVB
orbital insertion maneuver was approximately 9 seconds longer than pre-
dicted, with cutoff velocity within about 1.2 ft/sec of the planned value.
The total time to orbital insertion was asbout b4 seconds longer than pre-
dicted, with actual parking orbit parameters of 100.2 by 98.0 miles.

As on Apollo 12, the S-IVB was targeted for a high-~pericynthion
free-return translunar profile, with the first major spacecraft maneuver
intended to lower the pericynthion to the planned orbital altitude of
60 miles. Upon execution of this maneuver, the spacecraft was intention-
ally placed on a non-free-return trajectory. The achieved pericynthion
altitude at translunar injection was 415.8 miles. The accuracy of the
translunar injection maneuver was such that the option for the first
planned midcourse correction was not exercised. The velocity change re-
quired at the second planned midcourse option peint, intended as the time
for entering the non-free-return profile, was 23.2 ft/sec. The trajecteory
parameters for the translunar injection and all spacecraft maneuvers are
presented in table L4-II.
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TABLE 4-I.- DEFINITION OF TRAJECTORY AND ORBITAL PARAMETERS

Trajectory Parameters Definition
Geodetic latitude Spacecraft position meesured north or south from
the earth's equator to the locel vertical vector,
deg
Selenographic latitude Spacecraft position measured north or south from

the true lunar equatorial plane to the local ver-
tical vector, deg

Longitude : Spacecraft position measured east or west from the
body's prime meridien to the local vertical vec-
tor, deg

Altitude Perpendicular distance from the reference body to

the point of orbit intersect, feet or miles; alti-
tude above the lunar surface is referenced to the
altitude of the landing site with respect to mean
lunar radius

Space-fixed velocity Magnitude of the inertial wvelocity vector refer-
enced to the body-centered, inertial reference
coordinate system, ft/sec

Space-fixed flight-path angle TFlight-path angle measured positive upward from
the body=-centered, local horizontal plane to the
inertial velocity vector, deg

Space-fixed heading angle Angle of the projection of the inertial velocity
vector onto the local body-centered, horizontal
plane, measured positive eastward from north, deg

Apogee Maximum altitude above the oblate earth model, miles
Perigee Minimum altitude above the coblate earth model, miles
Apocynthion Maximum altitude above the moon model, referenced

to landing site altitude, miles

Pericynthion Minimum altitude sbove the moon model, referenced
to landing site altitude, miles

Period Time required for spacecraft to complete 360 de-
grees of orbit rotation, min

Inclination . Acute angle formed at the intersection of the orbit
plane and the reference body's equatoriel plane,
deg

Longitude of the ascending Longitude where the orbit plane crosses the ref-

node erence body's equatorial plane from below, deg



TABLE

4-77,- TRAJECTORY PARAMETERS

Translunar phase

. Altitude Space-fixed Space-Tixed Space~fixed
Event Re;‘erence hr-mm?' Lat;tude, Longltude, above launch velocity, flight-path heading angle,
ody ,‘m%n’sfc eg eg _ped, miles ft/see angle, deg deg E of N
S-IVE second ignition Earth 2:35:46.4 22,483 142 . 45R 105.39 25 573.1 .032 65.708
5-IVB second cutoff Earth 2:h1:37.2 9.398 166.45E 175.71 35 562.6 7.182 59.443
Translunar injection Earth 2:41:47.2 8.928 167.21E 182.45 35 538.4 7.635 54,318
Command and service Earth 3:06:28.9 | 27.03W 129.67H 3 77854 23 027.8 h5.03k 72.297
module/S~IVB separation
Docking Earth 3:19:08.8 30.218 118.10W 5 934.90 21 861.% 51.507 79.351
Spacecraft/S-IVE sepa- Earth 4:01:00.8 31.95N 105.30W 12 455.83 16 619.0 61.092 91.401
ration
Pirst midcourse correction
Ignition Earth 30:40:49.6 22.93N 101.85W {121 381.93 4 e82.5 T7.h64 112.843
Cutof?t Earth 30:40:53.1 22.80K 101.86W § 121 385.43 4 685.6 77.743 112,751
Becond midcourse correction
Ignition Earth 61:29:43.5 20.85N 159.70E §1B88 371.38 3 065.8 76.364 115.46k4
Cutoff Earth 61:30:17.7 20.7h¥ 159.568 | 188 393.19 3 093.2 79.934 116.54
Tra.naea.z;th phase
{ Pransearth injection
Tgnition Moon 79:27:39.0 3.738 65.46E 5 L65.26 4 sht.7 72.645 -116.308
Cutoff Moon 79:32:02.8 3.62K 6L.TTE 5 658.68 5 020.2 64,784 -117.886
Third midcourse correction
Ignition Earth 105:18:28.0 19.63N 136.8Lw | 152 22h,32 L ks57.8 ~79.673 114,134
Cutoft Earth 105:18:42.0 19.50N 136.90W | 152 215.52 L 456,86 -19.765 11b,242
Fourth midcourse correction
Iguition Earth 137:39:51.5 11.35K 113.39E 37 808.58 10 105.1 -72.369 118.663
Cutoff Earth 137:40:13.0 11.34N 113.32E 3T 776.05 10 11L.6 -72.373 118.660
Service module separation Earth 138:01:48.0 10.88N 108.7TTE 35 694.93 10 Los5.9 ~71.941 118.82h
Undocking Earth 141:30:00.2 1.238 1T.55E 11 257.48 27 Lé%.9 -60.548 120.621
Entry interface Earth 142:40:45.7 28.238 173.LLE 65.83 36 210.6 -6.269 T7.210

£
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The discarded 5-IVB stage was targeted for a lunar impact of 3 de-
grees south latitude and 30 degrees west longitude. The S-IVB maneuver
to achieve lunar impact was initiated at € hours, with a firing duration
of 217 seconds using the auxiliary propulsion system., At approximately
19 hours 17 minutes, tracking data indicated the S-IVB had acguired an
unexplained veloclty increase of about 5 ft/sec along a projected earth
radius which altered the projected lunar impact point closer to the tar-
get. The stage impacted the lunar surface at TT7:56:40 and at a location
of 2.4 degrees south latitude and 27.9 degrees west longitude. The tar-
geted ilmpact point was 125 miles from the Apollo 12 seismometer, and the
actual point was Th miles away, well within the desired 189 mile radius.
The S-IVB impact results are discussed in section 11.0.

The accuracy of the first midcourse correction (table L-II), which
placed the spacecraft on the non-free-return trajectory, was such that a
maneuver wWas not required at the third planned option point. However,
because of the oxygen tank incident, a 38-ft/sec midcourse maneuver was
performed at 61:29:44 using the descent engine to return the spacecraft
to a free-return trajectory. This maneuver alone would have caused the
command module to nominally land in the Indian Ocean south of Mauritius
Island at approximately 152 hours.

At 2 hours beyond pericynthion, a second descent propulsion maneuver
was performed to shorten the return time and move the earth landing point
to the South Pacific. The 263.8-second maneuver produced a velocity change
of 860.5 ft/sec and resulted in an initial predicted earth landing point
in the Pacific Ocean at 142:53:00. The transearth trip time was thus re-
duced by about 9 hours.

The first transearth midcourse correction (table L-III), was per-
formed at 105:18:28 using the descent propulsion system. The firing was
conducted at 10 percent throttle and produced a velocity change of about
7.8 ft/sec to successfully raise the entry flight-path angle to minus
6.52 degrees,

Spacecraft navigation for the aborted mission proceeded satisfactor-
ily. Post-pericynthion navigation procedures were designed to support
transearth injection, and special data processing procedures were re-
quired for dual vehicle tracking prior to entry. Less range data than
usual were received from tracking stations during the abort phase because
the power amplifier in the spacecraft was turned off for most of the time
to conserve electrical power. The small amounts of range data received
and the resulting large data arcs, however, were sufficient to maintain
navigation accuracies approximately equivalent to those of Apollo 12.



TABLE 4-III.- MANEUVER SUMMARY
(a) Translunar
Resultant pericynthior conditions
s . Firing Velocity 3 s N
Maneuver System ignition time, time, change, | Altitude Veloeity, | Latitude, | Longitude, Per?:yitt?“
N nr:min:sec . ft/sec sbove landing i/ sec deg dee arrival time,
ses site, miles hr:min:sec
Trenslunar injection 5-TVR 21351464 350.8 16 039 86.8 8184 4 1,478 178528 T7:56:22
First midcourze Service propulsion 30:h0:49 .6 3.5 23.2 63.0 8277.% 3.34N 178.93E T1:28:39
correction
Second midcourse Descent propulsion 61:29:43.5 34,2 37.8 136.7 8053,k 3,028 179, 20W T7:20: 57
correction
(b) Transearth
o ) Firing Velocity Resultant entry interface condition
Maneuver Cystem Ignition time, time change Entry
’ - hrimin:sec sec' ft,/sec, Plight-path Velocity, Latitude, Longitude, jval ti
angle, deg ft/sec deg deg arr ime,
¢ hr:min:sec
Trensearth injection Descent propulsion 79:27:39 263.8 B€D.% Ho entry (vacuum perigee = 80.6 miles)
Third midcourse Descent propulsion 105:18:28 k.0 7.5 -6, 2k 36 220.6 28,228 173.L9E 1h2: bl a7
correction
Fourth midcourse Lunar module reactiom 137:39:51.5 21.5 3.0 -6,26 36 210.9 28,238 1T3.46E 1h2: k0 46
correction control

S—
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The unusual spacecraft configuration required that new procedures
for entry be developed and verified. The resulting timeline called for
a final midcourse correction 5 hours before entry, separation of the
service module 4 hours 39 minutes before entry, and undocking of the
luwar module at 1 hour 11 minutes before entry. Service module separa~
tion was performed using the lunar module resction control system. Sep-
aration velocity following lunar module undocking was provided using
pressure in the docking tunnel.

The final midcourse correction maneuver used the lunar module reac-
tion control system. Landing occurred at 142:54:41 in the Pacific Ocean
at 21 degrees 38.4 minutes south latitude and 165 degrees 21.7 minutes
west longitude, which was about 1 mile from the target point.



5.0 COMMAND AND SERVICE MODULE PERFORMANCE

The performance of the commend and service module systems 1s dis-
cussed in this section. The sequential, pyrotechnic, service propulsion,
thermal protection, earth landing, and emergency detection systems and
all displays, controls, and crew provisions operated essentially as in-
tended and are not discussed. The pyrotechnic system, which performed
all desired functions, did exhibit two minor anomalies, which are dis-
cussed only in sections 14.1.6 and 14.1.10 of the Anomaly Summary, and
two discrepancies in the operation of crew equipment were noted, these
being discussed in sections 14.3.1 and 1L.3.2 of the Anomaly Summary.
Except for these four cases, all cther anomalies are generally mentioned
in this section but are discussed in greater detail in the Anomaly Sum-

mary .

5.1 STRUCTURAL AND MECHANICAL SYSTEMS

At 1ift-off, measured winds, both at the surface and in the regiocn
of maximum dynamic pressure, and accelerometer data indicate that struc-
tural loads were well below the established limits during all phases of
flight. The predicted and calculated spacecraft loads gt lift-off, in
the region of maximum dynamic pressure, at the end of first stage boost,
and during staging were similar to or less than previous Apcllo Sstuwrn V
launches. Command module sccelerometer data prior to S-IC center-engine
cutoff indicate longitudinal oscillations similar to those measured on
previous flights. Although longitudinal oscillations in the S-II engine
structure and propellant system caused early shutdown cof the center en-

ine, the vibrations at the spacecraft during 5-II boost had an amplitude
less than 0.05g at a frequency of 16 hertz. The maximum oscillation mea-
sured during either of the two S-IVB thrust periods was C.06g, also at a
frequency of 16 hertz. Oscillations during all four launch vehicle boost
phases were within acceptable spacecraft structural design limits.

A1 mechanical systems functioned properly. One mechanical anomaly,
however, was a gas leak from one of two breech assemblies in the apex
cover Jettison system, and this problem is discussed in section 1ih.1.6.

In addition, docking twnnel insulation, which normally remains with the
lunar module after separation, was noted from photeographs to have cracked
and expanded radially., Since the cracking is believed to occur during
pyrotechnic firing and has been seen in past flights, it is not a problem.

Structural temperatures remained within acceptable limits throughout
the mission. However, because of the long cold-sosgk period following
powering down, The command module structure exhibited significantly lower
temperatures than has been cobserved in previous flights.



5.2 ELECTRICAL POWER

5.2.1 DBatteries

Command module battery performance was acceptable throughout the
mission. Entry battery C had been isolated throughout the flight, and
st 58 heours 40 minutes, batteries A and B were also isolated from the
spacecraft buses. DBatteries A and B were charged a total of three times
each during the flight, including once each using power from the lunar
module. Following the cryogenic oxygen incident, battery A was twice
placed on main bus A to support spacecraft load requirements. Preentry
procedures were conducted with the lunar module supplying power to the
command module main bus B through the cormmand and service module/lunar
module unbilical and with entry battery C supplying power to main bus A.
This configuration was maintained from 6 hours 30 minutes prior to entry
until 2 hours 30 minutes prior to entry, at which time the lunar module
batteries were disconnected and all electrical power loads were assumed
by the command module entry batteries.

5.2.2 Fuel Cells

Prior to lift-off, the crew experienced erratic readings from alil
three fuel cell flow indicators when cycling the switch, but system oper-
ation was normal.

During the flight, the three fuel cells operated as expected until
the sudden loss of pressure in cryogenic oxygen tank 2, as discussed in
section 1k,1.1. TFuel cell 3 condenser exit temperature varied periodic-
ally. A behavior present on all previous flights, and characteristic of
the system under certain operating conditions. BSoon after the loss of
oxygen pressure in tank 2, fuel cells 1 and 3 lost power and were shut
down. Fuel cell 2 sustained the total command and service module load
until the depletion of oxygen pressure in tank 1.

Unusual variations in the oxygen flow rates to all three fuel cells
were observed in the 3-minute period preceding the tank pressure loss.
These variations were caused by the simultaneous pressure excursions tak-
ing place in cryogenic oxygen tank 2. The fuel cell 1 regulated nitrogen
pressure indication went tc the lower limit of the measurement when the
pressure in cryogenic oxygen tank 2 dropped. Analysis of related fuel
cell parameters confirmed this discrepancy to be a loss of instrumenta-
tion readout and not an actual loss of the regulated nitrogen pressure,
Performance of fuel cells 1 and 3 degraded within 3 minutes after the
oxygen tank 2 pressure dropped. The degradation is considered to have
been caused by the fuel cell oxygen shutoff valves closing abruptly be-
cause of the shock generated when the bay U panel separated. A more de-
tailed discussion is contained in reference 1.
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During the missicn, the fuel cells supplied approximately 120 kW-h
of energy at an average current of approximately 24 amperes per fuel cell
and at an average bus voltage of 29.4 volts.

5.3 CRYOGENIC STORAGE

Cryogenic storage system operation was satisfactory until k6:40:09,
when the quantity indication was lost for oxygen tank 2 (section 14.1.1).
At sbout 56 hours, the pressure in oxygen tank 2 suddenly dropped to zero
and the pressure in oxygen tank 1 began to decsy until all primary oxygen
was lost. As a result, power was lost from fuel cells 1 and 3, and after
oxygen was essentielly depleted from tank 1, fuel cell 2 was taken off-
line. After the flight, a comprehensive review <f the history of cryo-
genic oxygen tank 2 was made to determine whether an unfavorable condi-
tion could have existed prior to launch. This review included test
records, materials review dispositions, and failure reports. No positive
indication of any unfavorable conditions prior to shipment to the launch
site could be found in the testing or inspections conducted. However,
to accomplish a modification on the vac-ion pumps, the complete oxygen
gshelf, including the oxygen tanks, was removed from the service module
structure during which the oxygen shelf was accidentally dropped with
no apparent damage.

After initial cryogenic oxygen filling during the countdown demon-
stration test at Kennedy Space Center, tank 2 could not be detanked using
the normal procedures. The problem resulted from locse or misaligned
plumbing components in the dog-leg portion of the tank fill path. After
numerous attempts using gaseous oxygen purges and higher expulsion pres-
sures, the fluid was bolled off through the use of the tank heaters and
fans, assisted by pressure cycling. During the detanking sequence, the
heaters were on for about 8 hours, but it was believed that no damage
would be sustained by the tank or its components because of the protee-~
tion afforded by internal thermal switches. However, the use of the
heaters in detanking required that the switches open under a load of
6 amperes at 65 V dc, twice the normal flight operating conditiocns, for
each heater. Tesis show that opening the switches under these conditions
will fuse the contacts closed and eventually damage fan motor wire insu-
lation. It is this damage which is believed to have csasused the inflight
failure in tank 2 and loss of pressure.

Consumable quantities in the cryogenic storage system are dis-
cussed 1n section T.1.
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5.4 COMMUNICATIONS EQUIPMENT

The communications system satisfactorily supported the mission. Both
S-band and VHF communications were used until tranglunar injection, after
which the VHF was turned off and the S-band equipment was used until space-
craft power-down at approximately 58 hours. S-band and VHF wvoice, color
television pictures, and real-time and playback telemetry were satisfac-
tory. Uplink and downlink signal strengths corresponded to preflight
predictions. Communications system management, including antenna switch-
ing, was good.

Prior tc the television broadcast at spproximately 55 hours, diffi-
culty was experienced with high-gain antenna scquisition for approximately
12 minutes. After a change in spacecraft asttitude, satisfactory acquisi-
tion was accomplished. Further details concerning this problem are dis-—
cussed in section 14.1.4.

At approximately 56 hours, the high-gain antenna experienced an ap-
parent switch from narrow to wide beamwidth, with a resultant temporary
loss of telemetry data. This occurrence coincided with the oxygen tank
pressure loss. Post-separation photographs ¢f the service module show
damage to the high-gain antenna, which is attributed to the loss of a
service module outer panel. This damage, as discussed in reference 1,
caused the beam switch and the resultant loss of data,

From 101:53:00 to 102:02:00 and from 123:05:00 to 123:12:00, the
communications system was powered up to the extent necessary to transmit
high-bit-rate telemetry data using the ommidirectional antennas. The
S-band system was turned on for verification prior to undocking and per-
formed nominally. The VHF/AM and VHF recovery systems were turned on at
parachute deployment and operated nominally throughout recovery.

5.5 INSTRUMENTATION

The instrumentation system performed normally except for the follow-
ing discrepancies, both of which have occurred on previous flights. The
sult pressure measurement indicated 0.5 psi below cabin pressure until
the command module was powered down., However, when the command module
was powered up at 123 hours, the measurement indicated correct values,
as discussed in section 14.1.9. The potable water quantity measurement
operated erratically for a brief period early in the mission. This anom-
aly is described in section 14.1.8. The pressure, temperature, and quan-
tity measurements for oxygen tank 2, along with the fuel cell 1 nitrogen
pressure transducer failure, are discussed in section 1k.1.1l, since the
anomalous performance of these systems is related to the tank incident.
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The service propulsion auxiliary propellant gaging system failed prior
to launch and a measurement waiver was granted. The failure, which re-
sulted in shorting of the instrumentation power supply, was caused from
fuel leakage into the point sensor module within the tank. Similar fail-
ures have occurred on previous flights, and since this system is inde-
pendent of the primary gaging system, which was operating properly, per-
formance of the mission was not affected.

5.6 GUIDANCE, NAVIGATION, AND CONTROL

Performance of the guidance, navigation, and control system was
normal except for two instances. Random motion observed in the sextant
shaft during the zero optics mode was operationally prevented by turning
off power to the optical system when not in use. This problem occurred
during Apollo 12 and is thought to be caused by a buildup of contact
resistance in the slip rings of the half-speed resolver in the sextant
(section 14.1.3). The crew reported the 0.05g light did not illuminate
as required within 3 seconds after the digital computer had indicated
0.05g. A manual procedure was therefore required to start the entry
monitor system, which performed nominally throughout the remainder of
entry (section 14.1.5). As a result of the aborted mission, all power
was removed from the inertial platform, including heaters, for approxi-
mately 80 hours. After powering up and coarse aligning the platform to
that of the lunar module, the command module was guided to a successful
landing within approximately 1 mile of the targst location, Because of
power restrictions, the circuit breaker for the data storage equipment
recorder was left open during entry, and no entry data are available for
an entry performance analysis.

A1l attitude control functions were satisfactory. Initial separa-
tion from the S-IVB was performed by thrusting for L.28 seconds to impart
a velocity change of 0.86 ft/sec. After a manual pitch maneuver, the
command and service modules were docked with the lunar module. Rate dis-
turbances noted at docking were 0.16 deg/sec peak in pitch and yaw, and
0.60 deg/sec peak in roll.

The passive thermal control modes attempted at T:43:02 and 32:21:49
were not successful and had to be reinitiated. The attempt at T:43:02
resulted in a divergent coning angle because the roll rate was established
using one rather than two roll engines, as required by the checklist. 1In
addition, an incorrect roll rate was loaded intc the digital sutopilot.
The attempt at 32:21:49 resulted in a divergent coning angle because an
unplanned minimum impulse engine firing occurred 13 seconds after initia-
ting the roll rate. The engine firing command (two negative roll engines)
was generated when the roll manual attitude switch was changed from the
rate-command position to the acceleration-command position. The engine
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firing could have been avoided procedurally by disabling all engines be-
fore doing any control system switching. The passive thermal control mode
attempted at 32:21:49 is compared with a typical case in figure 5.6-1,
which shows the adverse effects of two extraneous firings. All subse-~
quent passive thermal control modes using the command and service module
were established normally.

NASA-53-70-5825
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Figure 5.6-1.- Comparison of early translunar maneuver to
establish a passive thermal control mode.

At the time of the oxygen tank incident, three events took place
that affected control system performance: the guad C isclation wvalves
closed (as discussed in section 14.1.1), a voltage transient caused a
computer restart, and the digital autopilot re-initialized the attitude
to which it was referenced. The response of the digital autopilot te
these events was as programmed, and rate and attitude errors were reduced
to a nulled condition within 75 seconds. Reference 1 contains a more
complete discussion of spacecraft dynamics during and after the oxygen
tank anomaly.
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The only translation maneuver performed with the service propulsion
system was the first midcourse correction. Spacecraft dynamics during
this maneuver were nominal, and significent translation parameters are
shown in the following table.

First midcourse
Parameter .
correction
Time
Ignition, hr:min:sec 30:40:49.65
Cutcff, hr:min:sec 30:40:53.14
Duration, min:sec 3.49
Velocity gained, ft/sec¥
(desired/actusal )
X -13.1/-13.2
Y -1h.7/-14.5
Z -12.2/-12.3
Velocity residual, ft/sec
(spacecraft coordinates )*#
X +0.1
Y +0.2
Z +0.3
Entry nmonitor system +0.7
Engine gimbal position, deg
Initial
Pitch 0,95
Yaw -0.19
Maximum excursion
Pitch +0. bk
Yaw -0.51
Steady-state
Pitch 1.13
Yaw -0.L4
Cutoff
Pitch 1.17
Yaw ~0.54k4
Maximum rate excursion, deg/sec
Pitch +0.08
Yaw ' +0.16
Roll -0.08
Maximum attitude error, deg
Pitch -0.0k
Yaw -0.24
Roll +0.12

*Velocity gained in earth-centered inertiel coordinates.
¥#¥Velocity residuals in spacecraft coordinates after
triomming has been completed.
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The crew reported a pitch-up disturbance torque was exerted on the
command module soon after undocking until the beginning of entry. Most
of this time, only low-bit-rate telemetry was available and therefore a
detailed analysis is impossible. A 20-minute segment of high~bit-rate
data was received just prior to entry, and an unaccountable pitch-up
torgque of 0.001 deg/sec? was observed. The possible contributing causes
for this torque could have been gravity gradients, atmospheric trimming,
venting through the umbilical, venting through the tunnel hatch, and a
gradual propellant leak. However, none of these is considered to have
been a single cause, and either a combination of these causes was present
or some undetermined venting took place.

Table 5.6-1 is a sumnary of gyro drift measurements deduced from
inflight alignments. The null-bias drift coefficients for all three gy Tos
were updated at 32 hours, based upon drift rates calculated from four
platform alignments. The alignment prior to entry was performed by first
conducting a coarse alignment to the lunar module platform and then using
the automatic optics positioning capability to locate stars for a precise
alignment. This technique was necessary because of the difficulty in
recognizing constellations through the scanning telescope as a result
of reflections from the lunar module and obscuration by vented particles.

TABLE 5.6-I.~ PLATFORM ALIGNMENT SUMMARY

Star angle Gyro f.orq::ng engles, Gyro drift, mERU
Ster used diffarence, & Comments

dog X ¥ z X ¥ 2

Time Cption
hr:imin code

0065 26 Spica, 33 Antares 0.00 =0.067 | =0.000 | +0.,162 e - .
0526 {m)} 35 Raselhague, L4 Enif 0.01 +0.175 | +C.172 | =0.012 - - -

1040 ib) 20 Dnoces, 27 Alkaid 0.00 =0.123 1 -0.113 | +0.092 - - -
2347 53] 31 Arcturus, 36 Vega 0.01 =0.283 [ ~0.161 §+0.h03 | +1.4 | +0,8 [+2.1 | Check star 36
28:49 | b} 30 Menkent, 32 Alphecce Q.01 ~0.08L } -0.075 | 4+0.1%6 | +1.1 | +41.0 |+1.9 | Check star 35
907 (v} 23 Denebola, 32 Alphecca 0.00 +0.285 1 +0.011 | +0.131 i - - Check star 31
ka3 (e} From lunar module primary

guidance

PR L] {a) 36 Vega, 40 Alteir 0.00 ~1.253 | +0.385 | +3.263 -— - —

%praferred alignment
Ppeterence matrix { REFSMMAT)
cCcarsie alignment

Table 5.6-II summarizes the inertial component preflight histories.
Velocity differences between the S-IVB instrument unit and the command
module platform during earth ascent indicate a T5-ft/sec difference in
the ¥-axis., A Y-axis difference is typical of a command module platform
gyrocompassing misalignment at 1ift-off. However, the Y-axis error nag-
nitude is not typical and is the largest observed during ascent to date.
The cause of the discrepancy was the magnitude of the null bias drift
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TABLE 5.6-II.~ INERTIAL COMPONENT PREFLIGHT HISTORY

Error sample Standard Number of Countdown Flipht 1 i.w,ht. HYC FLirht uvere
mean deviatlon smmples value Toud tazlore apdate after updut.
Accelerometers
%-3cale factor error, ppm . . . . -!99-7 T* 2 T -199 —otin
Bius, mlsece ......... -0.18 0.07 T -0.26 - .21 —o.nt
Y-Scele factor error, ppm . . . . -1gk A 3L T -10k ~190)
Bias, cm/lac2 ......... -0.20 0.04 1 0.0 Ll - Ly
Z-Scale factor error, DPm . . o« -389 38 ki -h1g =hiv
Bins, m/lac2 ......... +0.02 0.06 T +0.07 Boglirh -0, VR
Cyroa copes
X-Rull bias drift, mERU . . . . . 0.0 1.28 7 +0.5 b ‘i s
Acceleration drift, spin refer-
ence axis, mERU/g . . . . . . . -1l 0.%8 T -1.0 -
Acceleration arift, input
axis, mERU/g . . . « . & . . . +22.G1 6.26 7 +310 +Lu
Y-Null bies drift, aERU . . . . . -1.5k 1.88 1 -1.b RS e -u.ob
Acceleration drift, spin refer-
ence axis, mERU/fg . . . . . . . 0,29 2.05 T -0.4 +hy
Acceleration drift, input
exis, mERU/g . . . . . . . . . +0.11 L. 28 1 *hy +1.
Z-Null biaa drift, mERU . . . . . -3.96 L9k 1 k.0 duo .19 o

Acceleration darift, spin refer-
ence axis, mERU/g . . . . . . . =5.37 2.96 T ~T.3 -t.0

Acceleration drift, input
axis, mERU/g . . . . . . . . +19.17 7.1k 7T +21.0 LAENY]

"Upsated to -0.167 at 1W1:30:00
Bipdated to +0.6 at 32:0b:29
®Updated to -1.2 st 32:0L:29
°Upa..te:| to -2.9 st 32:0Lk:29

coefficient for the X-axis, which was still within specified limits; this
coefficient being the most sensitive contributor to the gyrocompassing
misalignment. Table 5.6-II1 is a set of error sources which reproduce
the wvelocity errors observed during ascent.

After the oxygen tank incident, the platform was used as a reference
to which the lunar module platform was aligned. All power to the guid-
ance and navigation system, including the inertial measurment unit heaters,
was removed at sbout 58 hours. Heater power was applied about 80 hours
later, when the inertial measurement unit was put into standby and the
computer turned on. Based upon ground test data and two short pericds.
of telemetry, the minimum temperature is estimated to have reached 55° or
60° F before power-up. The only significant coefficient shift observed
after the long cold sosk was in the Z-axis accelerometer bias. The shift
was compensated for by an update at 141 hours from minus 0.04 cm/sec? to
the new value of minus 1.66 cm/sec?. Although no gyro measurements were

obtained just prior to entry, the precision of the landing indicated no
large misalignments.
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TABLE 5.6-III.~ INERTIAL COMPONENT ERRORS DURING LAUNCH

Error term Uncompensated Ong—glgmg
error specification
Offset velocity, ft/sec
D -0.75 -
Y oo e e e e e e 1.19 --
Zoe e e e e e e e e e e -0.25 -
. 2
Bias, em/sec
Looo v o w o s -0 .04
D 0.03
2o e e e e e e e e e e 0.099 0.2
Scale factor error, ppn
XKoo o v e e e e e e e -96 116
Y oo s e h e e e e e e 37 116
/O =47 116
Null bias drift, mERU
X o v v v v v v v v v u . 2.7
B 2.0
e e e e e e e e e e -0.3 2
Acceleration drift, input
axis mERU/g,
Zov v e e e e e e e 9.0 8
Acceleration drift, spin
reference axis, mERU/g
Yoo 9.0 5

Several entry monitor system bias tests were made during the flight.
The associated accelercmeter exhibited a stability well within specifi-
cation limits. Results of each test are given in the following table.
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Time Velocity A
. . cecelerometer
Time interval, change , . 2
bias, ft/sec
sec ft/sec

Before translunar injection 100 +0.8 +0.008
After translunar injection 100 +1.0 +0.010
10 hours 5 minutes : 100 +1.8 +0.018
29 hours 40 minutes 100 +1.5 +0.015

5.7 REACTION CONTRCL

5.7.1 Service Module

A1l service module reaction control parameters were normal from
1ift-off to the time of the oxygen tank anomaly. A total of 55 pounds
of propellant was used for the initial separation from the S-IVB, the
turnaround maneuver, docking and ejection. Prior to the tank anomaly,
propellant usage was 137 pounds, 33 pounds less than predicted for that
point in the mission.

Following the anomaly, all reaction control quads except C began
showing evidence of frequent engine firings. Data show that all propel-
lant isolation valves on quad C, both helium isolaticn valves on guad D,
and one helium isolation valve on guad B were shocked to the closed posi-
tion at the time of the oxygen tank pressure loss. Onr quad D, the regu-
lated pressures dropped momentarily as the engines fired with the hellum
isolation valves closed. The crew reopened the gquad D valves, and the
engines functioned normally thereafter. Because the quad C propeliant
isolation valves are powered from bus B, which lost power, the valves
could not be reopened and the quad remained inactive for the remainder
of the flight.

During the pesk engine activity period after the oxygen tank inci-
dent, engine package temperatures reached as high as 203° F, which is
normal for the commanded duty cycles., All reaction control datae were
normsl for the coenfiguration and duty cycles that existed, including the
guad C data which showed the system in a nonuse configuration because the
isclation valves were closed. System data were normal when checked prior
to entry at sbout 123 hours, at which time the total propellant consumed
was 286 pounds (86 pcunds from quad A, 65 from B, 33 from C, and 102
from D).
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5.7.2 Command Medule

The command module reaction control system helium pressures and tem-
peratures and the helium manifold pressures were normal from lift-off to
system activation just prior to entry. The pressures before activaticn
reflected the general cooling of the system resulting from the powered
dowrn configuration of the command module, The helium scurce temperatures
dropped from T70° to about 35° F during the mission. Prior to system acti-
vation the lowest engine injector temperature was 15° F. A preheat cycle
brougnt injector temperatures to acceptablie levels and hot firing checks
were satisfactory.

Just prior to undocking, two injector temperatures were 5° F below
minimum. However, engine operation was expected toc be normal, despite
the low temperatures, and undocking was performed without heating the
engines.

System decontamination at Hawaii was normal, except that the sys-
tem 1 fuel isolation valve was found to be in the open position. All
other propellant isolation valves were in the normal (closed) position.
Power from ground servicing equipment was used to close the valve, which
operated normally. Postflight investigation of this condition revealed
that the electrical lead from the system 1 fuel-valve closing coil was
miswired, making it impossible to apply power to this coil. This anom-
aly is discussed in section ih.1.7.

All avallable flight data and the condition of the system prior to
deactivation at Hawaii indicate that the system performed normally from
activation through the propellant dump and purge operation.

5.8 ENVIRONMENTAL CONTROL

During the periods when it was activated, the command module environ-
mental control system performed normally. From the time of powering down
at approximately 58 hours until reactivation approximately 1-1/2 hours
before entry, environmental control for the interconnected cabins was
maintained using lunar module equipment. Two anomalies associated with
the environmental control instrumentation occurred and are discussed in
sections 14.1.8 and 14.1.9. An additional discrepancy, noted after land-
ing and discussed in section 10.3, was the position of the inlet postland-
ing ventilation valve at the time of recovery. This discrepancy is dis-
cussed in section 1k4.1.2.

The oxygen distribution system operated nominally until deactivation
following the cryogenic tank incident. The sult compressor was turned
off at 56:19:58, and with the repressurization package off line, the surge
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tank was isolated 17 minutes later at an indicated pressure of 858 psia.
The 20-psi system was reactivated briefly four times from the surge tank
to pressurize the command module potable water system. Further discus-

sion of oxygen usage is presented in section T.l. BSystem operation for

entry was satisfactory, with the sult compressor limited to a pericd of

operation of only 22 miautes to conserve electrical power.

During the period when the command module was powered down, the cabin
temperature slowly decreased to approximately 43° F and considerable
amounts of moisture condensed on the spacecraft windows and the command
module structure. Thermal control, after powering up at 140 hours, was
gatisfactory, although the cabin temperature remained very cold during
entry. The command module poteble water served as the malin drinking sup-
ply for the crew during the mission, and approximately 14 pounds were
withdrawn after powering down, using the 8-ounce plastic bags. The crew
reported at approximately 120 hours they were unable to withdraw water
from the potable tank and assumed it was empty. Approximately 6 hours
after landing, the recovery crew was alsc unable to obtalin a water sample
from either the potable or waste water tanks. The recovery personnel
stated the structure near the tank and lines was very cold to touch, and
an snalysis of temperatures during the flight in this vicinity show that
freezing in the lines most likely occurred. This freezing condition could
have existed at the time a sample was to be taken. When the spacecraft
was returned to the manufacturer's plant, 24.3 pounds were drained from
the potable tank. The water system was subsequently checked and was found
to operate properly. Both the hot and cold potable water contained gas
bubbles. To eliminate these gas bubbles, which had also been experienced
on previous missions, a gas separator cartridge was provided but not used.

The auxiliary dump nozzle was used for the first time on an Apollo
mission. Dumping through this nozzle was discontinued and urine was sub-
sequently stored cnboard because a considerable number of particles were
evident on the hatch window and these interfered with navigation sight-
ings.

Upon recovery, the outlet valve of the postlanding ventilation was
open and the inlet valve was closed, whereas both valves should have been
open. This condition is reported in section 10.3.2, and the anomaly is
discussed in section 1k4.1.2,
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6.0 LUNAR MODULE PERFORMAKCE

The performance of the lunar module systems is discussed in this
section. All systems that are not discussed elther performed as intended
or were not used. Discrepancies and anomaliss are generally mentiocned
but are discussed in greater detail in the Anomaly Summary, sections 1L.2
and 14.3.

6.1 STRUCTURAL

The structural evaluation is based on guidance and control data,
cabin pressure measurements, command module acceleration data, photo-
graphs, and crew comments.

Based on measured command module accelerations and on simulations
using actual launch wind data, lunar module loads were within structural
limits during launch and translunar injection. Losads during docking and
service propulsion and descent procpulsion maneuvers were also within
structural limits.

Data telemetered during the oxygen tank incident indicate the pres-
ence of body bending oscillations in the docked spacecraft. The associ-
ated amplitudes, however, were of a very low level, and bending loads in
the critical docking-tunnel area were well below design limits.

6.2 FELECTRICAL POWER

The electrical power system performed all required functions. At
lunar module undocking, the descent batteries had delivered 143L.7 ampere-
hours from a nominal total capacity of 1600 ampere-hours, and the ascent
batteries had delivered 200 ampere-hours from a nominal total of 582
ampere-hours. The lunar module initial powered-down configuration re-
guired an average electrical energy consumption of 900 watts at 30 am-
peres. After the second descent propulsion firing, the lunar module was
further powered down to about a 360-watt (l2-ampere) level; as discussed
in section 7.2. A false battery 2 malfunction and master alarm occurred
at 99:54:00 and continued intermittently during the periods that the bat-
tery was on (discussed in section 14.2.3). A review of the data indicates
that a current surge of greater than 100 amperes occurred at 97:13:56
concurrent with a crew report of a thumping noise and snowflakes seen
through the lunar mocdule window. This occurrence is discussed in sec-
tion 14.2.2,
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€.3 COMMUNICATIONS EQUIPMENT

S-band communications were nominal from system actuastion at approxi-
mately 58 hours through lunar module undocking. Except for brief periods
when high-bit-rate data and high-quality downlink voice were required,
low power transmissions, backup voice, and omnidirectional antennas were
used to conserve electrical power. The S-band power amplifier was turned
off by cpening the circuit breaker to provide the higher medulation index
for telemetry. The primary communications configuration was low power,
low~bit~rate telemetry, omnidirectional antennas, and backup voice on
baseband. In this configuration, transmission of high-bit-rate data from
the spacecraft was attempted using a 210-~foot receiving antenna, and ex-
cept for regular intervals of data dropout because of vehicle attitude
changes, these data were of good quality.

The updeta link was used when required and performed nominally. No
VHF equipment was exercised, and the S-band steerable antenna was never
turned on, The antenna hesaters, which normally remain activated, were
turned off to conserve power, and the antenna temperature decreased to
approximately minus 66° F. In the passive thermal control mode, this
temperature varied between plus sand minus 25° F.

6.4 GUIDANCE, NAVIGATION AND CONTROL

System performance, with one exception, was nominal during all phases.
At completion of the maneuver to the attitude for the last midcourse cor-
rection, the attitude error needles were not zeroed because of an out-of-
sequence turn-on procedure for the digital autopilot and the inertial
measurement unit.

6.4.1 Attitude Control

The performance of the abort guidance system and all attitude control
aspects of the digital autopilot were nominal. Following the service mod-
ule oxygen tank anomaly, power was applied to the primary guidance system
for use in establishing passive thermal contrcl modes and to maintain at-
titude control until the transearth injection maneuver.

The passive thermal control mode after transearth injection was ini-
tiated using the digital autopilot in the manual minimum impulse mode.
The crew had considerable difficulty in establishing acceptable initial
conditions for the passive thermal control mode. This difficulty was
largely caused by the necessity to use the transliation hand controller
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to command rotation about the vehicle pitch and roll axes and the atti-
tude controller for yaw commands. The pilot's task was further compli-
cated by having the flight director attitude indicators powered down.
Without these displays, 1t was necessary tc monitor attitudes by observ-
ing gimbel angles on the displsy and keyboard sssembly. Because the
spacecraft yaw axis was not coincident tc that of the platform yaw axis,
either a pitch or roll command would cause a change in both of the cor-
responding gimbal-angie displays. After the vehicle attitude was changed
to more closely align with the platform and tco reduce the yaw gimbal-
angle disparity, passive thermal control waes esfablished satisfactorily.
Both guidance systems were then powered down until 105 hours. At that
time, the abort guidance system was powered up for control during the
first transearth midcourse correction. The passive thermal control mode
was reestablished and the sbort system was powered down.

After completing the maneuver to the attitude required for the
final midcourse correction, the crew reported that the attitude error
needles were not nulled on the flight director attitude indicatcr. The
sequence used to power up the platform and to enable the autopilot pre-
vented certain computer memory cells from being properly initialized.
Consequently , an attitude error bias was introduced between the stored
values of attitude error and those displayed on the attitude error nee-
dles. When the digitai autopilot is turned on, a computer routine checks
the status of an "error counter enable' bit to see if initislization is
required. If this bit is off, as it normally would be, initialization
takes place and the error counter, certain memory cells, and the iner-
tial coupling display unit digital-to-analog converters are all zeroed.
If the computer check finds the error counter enabled, the assumption
is made that initialization has already taken place and the calculated
attitude error is set into the error counter for subsequent display.

The error counters for the coupling display units are used by the
digital autopilot for attitude error displays, bubt are also used to
drive the platform during & coarse alignment. 4 platform ccarse align-
ment was performed at about 135 hours, and the error-counter-enahle
status bit was set. The digital autopilct was activated 2 hours later,
but with the error counters already enabled, no initialization took place
and g blas was introduced into the attitude error loop. The attitude
errors displayed to the crew at the completion of the sttitude maneuver
prior to the seventh midcourse correction reflected a bias in the pitch,
roll, and yaw axes of plus 1.3, plus 21.2, and minus 12.0 degrees, re-
spectively.

Spacecraft dynamics were very small during the service module Jetti-
son and lunar module undocking sequence. Velccity changes imparted to
the respective vehicles during each maneuver were as follows:
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Platform-sensed velocity changes, ft/sec
Command module aXes Lunar module axes
X Y Z X Y Z
Service module separation
Plus X translation Platform not power- 0.67] -0.081 0.01
Minus X translation - ed up at separation | -1.90| 0.01| -0.0k
Lunar module undocking -1.54 | 0.h2 | 1.00 | -0.65| -0.02| 0.00

6.4.2 Translation Maneuvers

Table 6.4-I summarizes the pertinent control system parameters dur-
ing each translation maneuver. BSpacecraft dynamic response during all
maneuvers was normal .

The throttle profile for the first midcourse correction performed
by the lunar module was 5 seconds at 12.7 percent followed by 27 seconds
at 40 percent. The firing was preceded by a lO-second, four-jet ullage
maneuver. A number of plus-X firings cccurred during the maneuver be-
cause pitch and roll thrusters were not inhibited by a Verb 65 entry, as
required by the checklist,

The transearth injection maneuver was performed with the primary
guidance system controlling the descent propulsion system. The throttle
profile was 5 seconds at 12.6 percent, 21 seconds at 40 percent, and the
remainder at full throttle. During both periods of throttle increase,
the roll-gimbal drive actuator traveled approximetely 1.35 degrees nega-—
tively from its value at ignition. These excursion were somewhat larger
than expected, but simulations have since shown them to be normal and
result from engine compliance and mistrim. Spacecraft dynamics were
nominal throughcout the firing. The first transearth midcourse correction
was the last maneuver to use the descent propulsion system. The maneuver
was performed by manually controlling pitch and roll using the hand con-
trollers and by automatically controlling yaw with the abort guidance
system attitude-hold mode. The lh-second firing was accomplished at
10-percent throttle with no adverse dynamics.

6.4.3 Alignment

The lunar module platform was coarse aligned to the command module
platform a few hours after the oxygen tank incident in preparation for
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TABIE 6.4-I.- LUNAR MODULE MANEUVER SUMMARY

Maneuver
Condltion Second mideourse Transearth Third midcourse Fourth mideourse
- correction injection correction correction
CPGRCE/DPS PGNCS/DPS AGZ/DPS AGS /DPS
Time
Igniticn, hr:min:sec 61:29:L3. kg 79:27:38.95 195:18:28 137:39:51.5
Cutoff, hr:min:sec 61:30:17.72 79:32:02.77 105:15: L2 137:40:13
Duraticn, sec 34,03 263.82 14 21.5
Velocity change vefore trim
(actual/desired)
X +3.0/+2.9 ~k25.5/-426 4 T.E/T. Bus -1.2/«1.5
Y ~3h.2/-34.3 +ELL B /4605 6 -1.9/-2.2
Z -15.9/-16.2 +378.8/+379.0 -1.3/-1.5
Velocity residual after
trim, ft/sec
X +U.2 +1.0 Ons o]
¥ 0.0 +0.3 0.1
Z +0.3 0.0 e}
Gimbal drive actustor, in. Hot applicable Not applicable
Initial
Pitch : -0.02 +0.13
Roll -0, 34 -0.28
Meximum excursion
Pitch +0.31 +0.16
Rell ~0.27 -0, Lk
Steady-state
Pitch +0.04 +0.,21
Roll -0.51 -0.55
Cutoff
Piteh +0,10 +0.23
Rell -0.31 -0.55
Maximum rate excursion, deg/sec
Pitch -0.6 +0.2 +0,2 +0.2
Roll -0.8 0.8 -0.6 +0.2
Yaw 0.2 +0.4 +0.2 +0.2
Meximum attitude excursion, deg
Pitch -3.62 -1.6 -0.6 0,4
Roll +1.69 +6.7 +0.9 -0.6
Yaw -1.60 -1.2 +0.4 +0. 4

“Earth-centered inertial coordinates.

**Change in velocity shown in body X-axis for descent propulsion firings under control of abort guidance
system.

the midcourse correction teo enter a free-return trajectory. In prepar-
ing for the transearth injection maneuver, a check of the platform align-
ment accuracy was completed by letting the computer point the alignment
optical telescope af the sun as though marks were to be taken. Results
of the sun check angles indicated & platform misalignments sbout any axis
of approximately half the allowable l-degree limit; therefore, a platform
realignment was not required before the maneuver.
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The primary guidance system was powered up at 133-1/2 hours, after
which a coarse alignment to the abort guidance system was performed.
The spacecraft axes had previously been aligned to an inertial reference
using the abort guidance system by sighting on the earth with the crew
optical alignment sight. Alignment accuracy was refined by performing
a realignment using the sun and moon as sighting targets for the align-
ment optical telescope. The star-angle difference of minus 1.12 degrees
resulted almost entirely from approximations in stored lunar and solar
erhemeris dsta and computer routines used to calculate sun and moon posi-
tion vectors. '

6.4.4 TInertial Measurement Unit

The inertial measurement unit performed properly throughout the mis-
sion. A preflight history of the inertial components and the inflight
accelerometer bias measurcments are given in the following table.

Error Sample | Standard N“Eger Countdown | Flight | Flight
mean deviagtion value lcad average
samples
Accelerometers
X - Scale factor error, ppm . . . . . -681 5 I -689 ~700
. 2
Bias, em/sec” .+ . . v v 0 4 . . +1.47 0.06 L +1.4 +1.49 +1,50
Y . Secsle factor error, ppm . . . . . ~1165 18 b -1173 -1190
Bias, cm/sec2 f e e a e e -1.42 0,065 k -1.42 -1.42 -1.35
% - Scale factor error, ppm . . . . . -2L} 61 h -292 -310
Bias, cm/se02 e e e e e e +1.56 0.017 b +1.57 +1.56 +1.52
Gyroscopes
X - Null dias drift, mERU , . . . . . +1.18 1.33 Y +0.2 +0.h
Acceleration drift, spin refer-
ence axis, mERU/g . . . . . . . . -0.93 1.19 b =2.6 ~-1.0
Acceleration drift, input axis,
mERU/gE . v v v v e e e e e -5.38 2.37 b -5.95 ~k.0
Y - Null bias drift, mERY . . . . . . +0.13 0,30 b 0.0 +0.1
Acceleration drift, spin refer-
ence axis, mERU/g . . . . . . . . +5.65 2.7% 4 +6.4 +7.0
Acceleration drift, input axis,
MERU/E  « v v v v v v e e e e e +6.35 1.70 h +7.8 +5.0
Z - Null bias drift, mERU . . . . . . -1.10 1.01 I -1.8 -G.1
Acceleration drift, spin refer-
ence axis, mERU/g . . . . . . . . 0.28 0.82 4 =0,5 0.0
Acceleration drift, input axis,
mERU/g . « & v 4 v e e e e -2.53 1.01 L -3.3 2.0
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6.4.5 Abort Guidance System Performance

Abort guidance system performance was neminal. No instrument cali-
brations or compensation updates were performed. Uncompenssted accelerom-
eter blases and gyro drifts remsined within normal operating limits even
though heater power was removed from the abort sensor assembly for most
of the flight to conserve electrical power. At times, the sensor package
temperature was as low as 37° F,

Accelerometer bias shifts associated with the 30-dsy and 3-day re-
quirements were well within specification. Table 6.4-II contains pre-
flight celibration histories for the initial components of the abort
guldance system.

TABLE 6.4-II,- ABORT GUIDANCE SYSTEM PREINSTALZATION CALIBRATION DATA

Sample Standard Number Final cali-
Accelerometer bias mean , deviation, of tration value, Flight load,
ug ug samples ug uE
X 36.9 16.3 18 57.0 60.0
Y -3.6 10.0 18 -32.0 -31.0
2 -1.6 32.3 18 46,0 L7.0
Standard Number Final cali-
Accelerometer scale factor deviation, of braticn value, Flight load,
Drm samples Tpm ppm
X 15.0 18 2B6 266
Y 16.0 18 -ige? ~12h9
Z JU] 18 -305 -522
Sample Stendard Number Final cali- . N
Gyro scale factor mean , deviation, of bration value, Flight load,
rpm ppm samples Ppm ppm
X 895 8.7 18 899 896
Y 83 12.9 18 870 870
z 1495 9.5 18 1501 1502
) Sample Standard Number Final cali-
Gyro fixed drift mean, deviation, of bration value, Flight load,
deg/hr deg/hr samples deg/hr deg/hr
X 0.02 0.08 18 0.11 0.06
Y -0.30 6.06 18 -0.29 -0.30
e -0.58 0.06 18 -0.45 =0.47
) Sample Standard Number Final cali-
Jyro spin axis mass me an deviation, of bration value, Flignt load,
deg/hr deg/hr samples deg/hr deg/nr
X 0.86 0.10 18 .90 0.89
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6.5 REACTION CONTROL

The reaction control system was activated at about 58 hours. Total
propellant consumption was 467 pounds.

About 6 minutes after activation, flight date showed a sizeable de-
crease (approximately 22 psi) in the system~-A propellant manifold pres-
sures. This decrease continued for ebout 4 or 5 seconds and was accom-
panied by an increase of 7 and 8 psi in the ascent propulsion system fuel
and oxidizer manifold pressures, respectively. These manifold pressure
changes indicate a high flow rate from the reaction control system. This
was verified by a decrease in the indicated quantity by about 15 pounds
At this seame time, the indicated position for the system-A ascent-feed
interconnect valves was open.

During passive thermal control modes, the cluster heaters were not
used and cluster temperatures ranged from 55° to 97° F.

6.6 DESCENT PROPULSION

With the exception of supercritical hellium system performance, de-
scent propulsion system operation, inecluding engine starts and throttle
response, was normal.

The descent propulsion system performed normally during the 34.3-
second mideourse correction to enter a free-return trajectory. This
maneuver was begun at the minimum throttle position (12 percent of full
thrust), and after 5 seconds, the throttle position was menually incressed
to approximately 37 percent, which was maintained for the remainder of the
firing. The transearth injection meneuver lasted 264 seconds. Approxi-
mately 15 seconds prior to engine shutdown, the pressurization isolation
solencid was closed to avoid a possible problem with propellant-tank
fracture mechanics, and the maneuver was completed in the blowdown mode
in which residual helium is the sole pressure scurce. The third system
firing, a midcourse correction maneuver, was 13.7 seconds in duration
and was performed in the blowdown mode at the minimum throttle position.
Upon completion of this third and final descent propulsion operation,
more than half the initisal propellant load remained.

The supercritical helium pressurization system displayed abnormal
performance, beginning with preflight opersastions. Prelaunch measurements
taken during the countdown demonstration test indicated a ncminal ground
pressure rise rate of 7.8 psi/hr. However, other special tests were per-
formed at various conditions which gave significantly higher rise rates.
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The average rise rate from lift-off to the first descent propulsion ma-
neuver was 7.0 psi/hr. Between the first and second firings, the rise
rate increased to 10.5 psi/hr, and after the second firing, the rise rate
was 33.5 psi/hr. This anomaly is further discussed in section 1Lh.2.1.

At sbout 109 hours when the helium bottle pressure had reached ap-
proximately 1937 psi, the burst diaphragm ruptured and relieved the super-
critical system through a special non-propulsive vent. The predicted
rupture range for this vehicle was 1900 * 20 psia. During venting, un-
expected motion was imparted to the spacecraft which disrupted the motion
established for the passive thermal control mode. The vent tube for the
supercritical helium tank is ported on two sides by diametrically opposed
oval-shaped holes, It was originally believed that the escaping gas would
exit these holes at 90 degrees to the tube axis such that no net thrust is
produced. However, the pressure distribution in the tube is such that the
two gas plumes have an included angle less than 180 degrees and probsbly
closer to 90 degrees. Therefore, the component of the gas flow along the
axls of the vent tube produces a net thrust in the opposite direction
which tends to induce a slight roll rate to the vehicle. Since venting
of the helium tank would be cause for sborting the mission, the unwanted
rolling moment, which is quite small, would have no ultimate effect on a
nominal profile. Therefore, the vent tube configuration for future space-
craft will not be changed to one having zero net thrust.

6.7 ENVIRONMENTAL CONTROL

Environmental control system performance was satisfactory during the
abort phase of the mission and provided a habitable environment for the
crew for approximately 83 hours, nearly twice the time of a nominal flight.
Only one anomaly, reverse oxygen leakage through one of the ascent stage
shutoff valves, cccurred but did not compromise system performance. All
crew provisions performed as intended except for cracking of a window
shade, discussed in 14.2.5.

An indicated total of approximately 290 pounds of water was used
from the lunar module tanks between activation of the sublimator and
undocking, snd an indicated total of about 50 pounds of water remsined.
Most of the water used for drinking and food preparation was cobtained
from the command module potable water tank before 124 hours, and drink-
ing water was subsequently used from the lunar module tanks. Average
water usage rates varied between 2.6 and 6.3 1lb/hr.
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Total oxygen usage from the three lunar module oxygen tanks was

20.3 pounds over an 82-hour period, for an average usage rate of 0.25 1b/
hr. Oxygen remaining in the tanks at undocking was 33.5 pounds. During
transiunar coast, lunar module cabin leskage was about 0.01k 1b/hr, assum-
ing an average cabin pressure of 4.5 psia. Command module cabin leakage
was estimated to have been sbout 0.027 lb/hr. These values indicate an
average metabolic consumption rate throughout the flight of approximately
.21 ib/hr.

The installed primary lithium hydroxide cartridge was used for ap-
proximately 27 hours (82 man-hours) following activation of the lunar
module at about 58 hours. The secondary cartridge was selected at about
85 1/2 hours. During operation of the lunar module carbon dioxide removal
system, the level was permitted to increase to an indicated 14.9 mm Hg.
The primary cartridge is nominally rated for a usage capacity of 41 man-
hours at 520 Btu/man-hour. The secondary cartridge, nominally rated for
about 17.9 man-hours, was used for 8 1/2 hours (25 1/2 man-hours). This
cartridge is identical to that used in the portable life support system.
A second primary cartridge was installed and used for approximately
6 minutes, but for the remainder of the mission, command module lithiuwm
hydroxide cartridges were operated in a special arrangement. One side
of each of two command module cartridges was covered and sealed with a
plastic bag ncrmally used to store a liquid-cooling garment. As shown
in figure 6.7-1, one corner of the bag was sealed to the inlet of the
sult circuit hose. The cabin atmosphere then returned to the lunar mod-
ule suit circuit through these supplemental cartridges by way of the two
ocoutlet hoses. The mass flow through this arrangement was partially re-
stricted with tape to properly load the suit-circuit compressors. After
approximately 20 hours of operation with two command module cartridges,
an additional unit was stacked on each original cartridge to improve the
carbon dioxide removal capability. With this supplemental configuration,
when only command module cartridges were being used, the indicated carbon
dioxide level was maintained between 0.1 and 1.8 mm Hg. The supplemental
removal configuration using the command module Iithium hydroxide cartridges
was assembled and tested on the ground during the flight prior tc its
actual use in the spacecraft.

Low cabin temperature, resulting from a greatly reduced thermal load-
ing from powered down electrical equipment, was uncomfortable to the crew
during the return flight. For most of this time, power levels were main-
tained between 350 and 400 watts. IEnvironmental equipment operation,
however, was normal for this thermal loading, with temperatures of the
water/glycol coolant at the sublimator inlet of approximately 46° F.

Cabin temperatures were typically between 54° and 60° F, and suit inlet
temperatures were maintained between L0O° and 41° F during this portion
¢cf the flight.
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The only anomaly observed in the environmental control system was
a reverse leakage from the oxygen manifold through the shutoff valve into
the ascent oxygen tank 2. Following the use of oxygen from the tank on
two occasions, tank pressure was permitted to increase to the regulated
manifold pressure, where it remained for the duration of the flight.
The maximum leakage rate through the valve was approximately 0.22 1b/hr.
Both the specification leakage rate and the preflight test leakage rate
were 0.001 1b/hr. The lesking valve would have presented a problem if
this ascent oxygen tank had developed an external leak. TFurther informa-
tion regarding this anomaly is contained in section 14.2.4.
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Figure 6.7-1.- Supplemental carbon dioxide removal system.
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Figure 6.7-1.~ Supplemental carbon dioxide removal system.

In using the lunar module water gun to dampen a towel, a piece of
towel material most likely became caught in the gun nozzle when the actu-
ating trigger was released, resulting in water leaskage from the nozzle.
The lunar module water gun was returned to earth and during postflight
testing was found to be operating properly. Postflight testing also
showed that reactuation of the valve can flush any towel material from
the gun. The command module water gun was satisfactorily used for the
remainder of the mission.



7.0 MISSION CONSUMABLES

Consumables from the command and service modules were used normally
during the 56 hours prior to the incident, at a modified ussge schedule
for 2 hours after the incident, and after command module activation just
prior to entry. The lunaer module usages occurred in the period following
power-up until the two spacecraft were undocked.

7.1 COMMAND AND SERVICE MODULES

Consumable usages for the command and service modules prior to the
inecident were nominal. PFollowing the incident and the attendant shut-
down of command module power, the only consumables used prior tc entry
were drinking water and surge-tank oxygen, required to pressurize the
potable water tank. OSpecific consumable usages for appropriate systems
are presented in the following paragraphs.

7.1.1 Service Propulsion Propellants

The service propulsion system was used only for the first midcourse
correction. The propellant loadings listed in the following table were
calculated from gaging system readings eand measured densities prior to
lift-off.

Fuel, 1b Oxidizer, 1b Total
Loaded
In tanks 15 606 24k 960
In lines 79 12k
Total 15 685 25 08L4 Lo 769
Consumed 92.3 1T 239.3
Remaining at time
of incident 15 592.7 24 937 40 529.7
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7.1.2 Reaction Control Propellants

Service module.~ At the time the system was powered down, reaction
control system propellant usage was 108 pounds higher than predicted.
The higher usage is attributed to the increased thruster activity requir-
ed to null the effects of propulsive venting from both oxygen tanks dur-
ing the incident. The usages listed in the following table were calcu-
lated from telemetered helium tank pressure data using the relationship
between pressure, volume, and temperature.

Fuel, 1b Oxidizer, 1lb Total
Loaded
Quad A 110.k 225.6 336.0
Quad B 109.5 225.5 335.0
Quad C 110.1 225.4 335.5
Quad D 110.1 226.2 336.3
Lhho.1 902.7 1342.8
Consumed 286#
Remaining at time
of system shutdown 1056.8

¥Preflight planned usage was 178 pounds.

Command module.- Command mecdule reaction control system propellant
usages cannot be accurately assessed, since telemetry data were not avail-
able during entry. Until the time of communications blackout, approxi-
mately 12 pounds of propellant had been used. TFor a normal entry, this
value would be consldered high; however, the system was activated longer
than normal and was used during separation from the lunar module.

Loaded quantities, 1b

System 1 System 2
Fuel by .2 L. 6
Oxidizer 77.8 78.5

Totals 122.0 123.1
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7.1.3 Cryogenic Fluids

Cryogenic oxygen and hydrogen usages were nominal until the time
of the incident. The pressure decay in oxygen tank 2 was essentially
instantaneous, while oxygen tank 1 was not depleted until approximately
2 hours following the incident. Usages listed in the following table
are based on an analysis of the electrical power produced by the fuel
cells.

Hydrogen, 1lb Oxygen, 1b
Avallable at lift-off
Tank 1 29.0 326.8
Tank 2 29,2 327.2
Totals 58.2 6540
Consumed
Tank 1 7.1 71.8
Tank 2 6.9 85.2
Totals 14,0 157.0
Remaining at the time
of the incident
Tank 1 21.9 255.0
Tank 2 22.3 2h2 .0
Totals Ly, 2 497.0

7.1.% Oxygen

Following the incident and loss of pressure in tank 1, the total
oxygen supply consisted of 3.7T7 pounds in the surge tank and 1 pound in
each of the three repressurization bottles. About 0.6 pound of the oxy-
gen from the surge tank was used during potable water tank pressuriza-
tions and to activate the oxygen system prior to entry. An additional
0.3 pound was used for breathing dulring entry.

7.1.5 Water

At the time of the incident, about 38 pounds of water was avalilable
in the potable water tank. During the abort phase, the crew used juice
bags to transfer approximately 14 pounds of water from the command module
to the luwnar module for drinking and food preparation.
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7.1.6 Batteries

The command module was completely powered down at 58 hours LO minutes,
at which time 99 ampere-hours remained in the three entry batteries. By
charging the batteries with lunar module power, availsable battery capacity
was increased to 118 ampere-hours. Figure T.l-1 depicts the battery energy
available and used during entry. At landing, 29 ampere-hours of energy
remained.
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7.2 LUNAR MODULE

Following lunar module power-up, oxygen, water, and battery power
were consumed at the lowest practical rate to increase the duration of
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spacecraft support from a nominal 44 hours to a required 83 hours plus
margins. In addition, the descent propulsion and reaction control sys-
tems were used to effect all required translation and attitude maneuvers
following the incident.

7.2.1 Descent Propulsion Propellsants

The loaded gquantities of descent propulsion system propellents shown
in the following table were calculated from quantity readings in the
spacecraft and measured densities prior to 1lift-off.

Fuel, 1b Oxidizer, 1b Total
Loaded 7083.6 11 350.9 18 L3k.5
Consumed 3225.,5 5 117.4 8 3L42.9
Rgmaining at undocking 3858.1 €& 233.5 10 091.6

T.2.2 Reaction Control Propellants

The reaction contrel system propellant consumption, shown in the

following table, was calculated from telemetered helium tank data using
the relationship between pressure, volume, and temperature.

Fuel, 1b Oxidizer, 1b Total
Loaded
System A 107.7 208.8 316.5
‘System B 107.7 208.8 316.5
Total 633.0
Consumed
System A 220
System B 247
Total Lot
Remaining at undocking
System A 96.5
System B 69.5
Total 166
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T.2.3 Oxygen

Actual oxygen usage closely followed predicted rates from the time
of lunar module power-up until undocking, st which time approximately
32 pounds of oxygen remsined. The values in the following table are
based on telemetered data.

) Remaining after
Loaded,; 1b Consumed, 1b undocking, 1b
Descent stage 49,3 21.9 27.4
Ascent stage
Tank 1 2.3 JL3
Tank 2 2.k 2.7
Total 5k.0 21.9 32.h

®The shutoff valve in ascent stage tank 2 had reverse leakage (dis-
cussed in section 14.2.4).

7.2.4 Water

During the sbort phase, lunar module water, which is used primarily
to cool the cabin and onboard equipment, was the most restrictive consum-
gble. As a result, extreme measures were taken to shut down all nones-
sential equipment in order to provide the maximum margin possible. At
launch, the total loaded water available for inflight use was 338 pounds.
At the time of undocking, approximately 50 pounds of water remained and,
at the reduced power condition, would have provided an additicnal 18 hours
of cooling. The actual water usage from the time of initial power-up to
undocking-is shown in figure 7.2-1.

T.2.5 Batteries

AL the time of power up, 2179 ampere-hours of electrical energy was
avallable from the four descent- and two ascent-stage batteries. As in-
dicated in figure 7.2-2, initial consumption was at a current of 30 amperes
until the second descent propulsion system firing, after which the vehicle
was powered down to a lZ-ampere load. At approximately 112 hours, power .
was provided to charge the command module entry batteries at a rate of
sbout T amperes for approximately 15 hours. The command module was alsc
powered from the lunar module at an ll-ampere rate for a brief period to
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operate the reaction control heaters and telemetry equipment. The esti-
nated total energy transferred to the command module was approximately

129 smpere hours. A total of L10 ampere hours remained in the lunar mod-
ule batteries at the time of undocking.

KASA-5-70-5829

280 60 —
Lunar module
power up
[
Tunnel vent completel
240 2 4p
System = \
| activation N 2
=
QL
200 AN 5 20 Tank 1 -—|
N Tank 2
N
= 160 AN o
E \\ 120 130 140 150
o
: Time, hr
H \\
[#3
4
& 120 \
\\
80 \\
I~ Switchove; to
\\ ascent water A
40 \ Undocking
\ -
I}
50 60 70 80 90 100 110 120 130 140 150

Time, hr



7-8

NASA-S-70-5830
2400

System activation
2200

5
/

8
/

Energy remaining, amp-hr

g
7

\ Undocking

50 60 70 80 % 100 110 120 130 140 150
Time, hr

Figure 7.2-2.- Lunar module total battery capacity during flight.



Apollo 13 flight crew

Commander James A. Lovell, Jr., Command Module Pilot John L. Swigert, Jr., and Lunar Module Pilot Fred W. Haise, Jr.



8.0 PILOTS' REPORT

8.1 TRAINING

Crew training for Apolloc 13 commenced on August 1, 1969. The crew
was based in Houston until December 1, 1969, when operations were trans-
ferred to the launch site for final training. The training time was ade-
quate to meet the planned launch date of April 11, 1970, and all training
objectives were met. The only difficulty in coordinating the training
activities was the scheduling of the lunar landing training vehicle for
the Commander. The late availebility of this vehicle, the large amount
of time required for this type of training, and the need to travel be-
tween Houston and Cape Kennedy complicated the training schedule signif-
icantly. Because a primary objective was a field geology experiment as
part of the second extravehiculer excursion, considerable emphasis was
placed on geology training. A week-long geology field trip to train the
crew as "observers' was completed early in the training cycle. Later
field trips emphasized practical geological procedures and timelines,
Extensive use of field radios, extravehicular equipment, and assistance
from mission control during these field trips made the trgining more
effective.

Several days prior to launch, the backup Lunar Module Pilot became
sick with measles. Examinations of the prime crew indicated thsat the
Command Module Pilcot was not immune to the disease; therefore, the backup
Command Module Pilot was substituted. The last 2 days prior to flight
were devoted to integrated training among the three crew members, includ-
ing the new Command Module Pilot. TFlight results indicate that the lsst
minute change of Command Module Pilots was practical and presented no
training deficiencies, including readiness for the abort condition that
occurred.

8.2 PRELAUNCH PREPARATION

The prelasunch timeline was satisfactory, and adequate time was
allotted for suiting and associated activities to meet the ingress time.
The final count was smooth and communications with the Test Conductor and
the Mission Control Center were adequate. After the fuel cell selector
knob was rotated and had been in the new position for a short time, the
fuel cell flow indicators would saslternately rise several scale marks and
then return to normal momentarily before cycling again. Since this ef-
fect was observed for all three fuel cells, the possibility of a sensor
enomgly was dismissed. With the crew fully strepped down, some difficulty
was encountered in removing the helmet protective covers just prior to
egress of the closeout personnel.
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8.3 LAUNCH

Ignition and 1lift-off occurred on schedule, A listing of major
flight plan events as they occurred is contained in figure 8-1. First-
stage performance was nominal and coincided very closely with simulations.
Communications during the high noise level phase of flight were excellent.
Staging of the 85-IC occurred nearly on time and was accompanied by three
distinct longitudinal oscillations. S-II ignition and thrusting was
smooth until about 00:05:32, when a sudden buildup in vibration was felt,
followed by illumination of the number 5 engine out light. The Mission
Control Center confirmed that engine 5 had shut down approximately 2 min-
utes early. 8-II performance after that time was smooth with no notice-
able abnormalities. 8-II staging and S-IVB ignition occurred late, at
9 minutes 57 seconds. BS-I1VB performance was nominal but seemed to be
accompanied by more vibration than was noted during Apollo 8. [The
Apollo 13 Commander had been the Command Module Pilot for Apollo 8]. A1l
three crewmen noted the small change in acceleration caused by the mixture
ratic shifts during S-II and S-IVB flight. S-IVB engine cutoff occurred
at 00:12:30, with the spacecraft guidance system registering the follow-
ing insertion parameters: velocity 25 565 ft/sec, apogee 102.6 miles,
and perigee 100.1 miles.

8.4 EARTH ORBIT

The insertion checklist was completed and disclosed no systems
abnormalities., The optics dust covers did not Jettison when the shaft
was driven 90 degrees (checklist was in error). However, the star align-
ment program was selected in the computer and the dust covers jettisoned
when the optics were being driven to the first star; a shift of approxi-
mately 150 degrees. The objective of television in earth orbit was to
show the Gulf Coast line, but this objective could not be achieved because
of cloud cover. Television preparation was very easily handled within
the nominal timeline.

8.5 TRANSLUNAR INJECTION

Nominal first-opportunity translunar injection procedures were used
and are satisfactory. Based on S5-IVB orbit attitude hold, the ground
controllers updated the spacecraft attitude indicators from 18 to 20 de-
grees. This update was satisfactory and resulted in an essentially zero
theta angle in the orbital rate display during the S-IVB translunar in-
Jection. O-IVB vibration was greater during translunar injection than
that experienced during Apollo 8. These vibrations had high-freguency,
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low-magnitude characteristics but presented no problems for monitoring
of the injection maneuver. At cutoff, the computer-displayed inertial
velocity was 35 560 ft/sec, and the entry monitor system accelerometer
confirmed the maneuver to be within 3 ft/sec of the desired value.

8.6 VTRANSPOSITION AND DOCKING

Following separation and translation, a manual pitch maneuver of
1.5 deg/sec was executed. Computer control was reselected, and a trens-
lation was initiated to give a small closing velocity. A digital auto-
pilot meneuver was executed to align the respective roll attitudes.
Meximum spacecraft separation was approximately 80 feet. At the final
attitude, the image in the crewman optical alignment sight was almost
completely washed out by the sun reflection from the lunar module until
the vehicles were separated by 6 feet or less. Contact was made at ap-
proximately 0.2 ft/sec with a slight roll misalignment. Subsequent tun-
nel inspecticn revealed a roll index angle of minus 2.0 degrees. The
handles on latches 1 and L were not locked and were recocked and released
manually. BSpacecraft ejecticn wes normal. Total reaction control fuel
used for transposition, docking, and extraction was reported as 55 pounds.

8.7 TRANSLUNAR FLIGHT

8.7.1 Coast Phase Activities

Following translunar injection, earth weather photography was con-
ducted for approximately 6 hours.

The first period of translunar navigation {Program 23) at 6 hours
was done to establish the sgpparent horizon attitude for optical marks
in the computer. Some manual meneuvering was required to achieve a
parallel reticle pattern at the point of horizon-star superposition.
The second period of navigation measurements was less difficult, and
both periods were accomplished within the timeline and reaction control
fuel budget.

The passive thermal control mode was initiated with the digital
autopilot. A roll rate of 0.3 deg/sec was used with the positive longi-
tudinal spacecraft axis pointed toward ecliptic north pole. An incorrect
entry procedure was used on one attempt and reinitialization of passive
thermal control was required. After proper initialization, all thrusters
were disabled and the spacecraft maintained an attitude for thermal pro-
tection for long periods without epproaching gimbal lock. Platform
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alignments (Program'52) with passive thermal control mode rates of
0.3 deg/sec were satisfactory in the optics resclve mode at medium speed,

At about 47 hours the oxygen tank 2 quantity sensor failed full
scale high, a condition which was confirmed by the ground.

8.7.2 First Midcourse Correction

The first midcourse correction maneuver, performed at the second
option point, was completely nominal. The service propulsion engine was
started and stopped on time, and residuals were negligible., In conjunc-
tion with this service propulsion maneuver, some differences were noted
with respect to the command module simulator. When gimbal motors were
turned on, an 8- to lO-ampere increase was noted, with a slightly faster
Jump than had been seen in the simulator. The major distinetion was the
fact that fuel cell flowrate indications are barely seen to move, whereas
there is a very noticeable change in the simulator. At engine ignition,
the ball valve indicators moved slowly to cpen, but in the simulator,
they instantaneously move to open. After turning off the battery bus
ties, the battery voltage slowly rose from 32 volts to the open circuit
voltage of about 37 volts, whereas in the simulator there is an instantan-~
€QuUs recovery.

The television presentation during the midcourse correction maneuver,
as well as during transposition and docking, interfered with normal oper—
ational functions to a degree not seen in training. The lunar module
pilot was forced to spend full time adjusting, pointing, and narrating
the television broadcast. A suggested alternative for telecasting during
dynamic events is to have the ground do all commentary. Crew-designated
television can be conveniently performed during a lull period when full
attention can be given to presentation requirements .

8.7.3 Cryogenic Oxygen Tank Incident

At approximately 55 hours 5S4 minutes, a loud noise was heard when
the Command Module Pilot was in the left seat, the Commander in the lower
equipment bay, and the Lunar Module Pilot in the tunnel. The noise was
comparable to that noted in exercising the lunaer module repressurization
valve. The Command Module Pilot and Lunar Module Pilot also reported a
minor vibration or tremor in the spacecraft.

Approximately 2 seconds later, the Command Module Pilot reported a
master alarm and a main-bus-B undervoltage light. Voltage readouts from
main bus B, fuel cell 3 current, and reactant flows were normal, and it
was concluded a transient had occurred. The Command Module Pilot then
initiated efforts to install the tunnel hatch.
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The Lunar Module Pilot proceeded to the right seat and found the
ac-bus-2 and ac-bus-2-overload warning lights on, with main bus B volt-
age, fuel-cell-3 current, and fuel-cell-3 reactant flow indications off-
scale low. Inverter 2 was then removed from main bus B.

On switching ac electrical loads to ac bus 1, the main bus A under-
voltage light illuminated, with a corresponding reading of 25.5 volts.
A check of the fuel cells revealed fuel cell 1 reactant flow to be zero.
At all times, fuel cells 1 and 2 were tied to main bus A and fuel cell 3
to main bus B, with the proper grey flags displayed.

Efforts to install the tunnel hatch were terminated when the Com-
mander observed venting of material from the service module sres. He
then reported the oxygen tank 2 pressure was zerc and oxygen tank 1 pres-
sure was decreasing. This informetion pinpointed the problem source to
within the command and service modules.

At ground request, fuel cells 1 and 3 regulator pressures were read
from the systems test meter, confirming the loss of these fuel cells.
AC bus 2 was tied to inverter 1, and the emergency power-down procedure
was initiated to reduce the current flow to 10 amperes. At ground re-
quest, fuel cell 1 end, shortly thereafter, fuel cell 3 were shutdown in
an attempt to stop the decrease in oxygen tank 1 pressure.

Lunar module powerup was handled quite efficiently by identifying
selected segments of an existing procedure, the "Lunar Module Systems
Activation Checklist." However, the crew had to delete the very high
frequency portion of the communications activation. This procedure also
assumed suited operations, so the crew had to turn on suit flow valves
and unstow hoses to establish air flow. This extended power-up blended
well with the preparation for the subsequent midcourse maneuver to enter
a free return trajectory. A similar real-time update to the 2-hour acti-
vation section of the "Lunar Module Contingency Checklist" was also quite
adequate. Lunar module activation wes completed at the time fuel cell 2
reactant flow went to zero because of oxygen depletion. The command and
service modules were then powered down completely according to a growmng-
generated procedure. To form & starting baseline for subsequent proce-
dures, each switch and circuit breaker in the command module was posi~
tioned according to ground instructions.

Potable water was obtained by periodically pressurizing the potable
tank with surge-tank oxygen and withdrawing potable water until the pres-—
sures equalized. This method provided potable water for crew use until
2L hours prior to entry, at which time water could not be withdrawn from
the potable tank and it appeared to be exhausted [section 5.8].
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The hatch, probe, and drogue were secured in the couches by lap belt
and shoulder harness restraints to prevent movement during subsequent
maneuvers . '

8.7.4 Midcourse Correction to a Free Return

A descent propulsicn system maneuver to reestablish a free-return
trajectory was planned for 61—1/2 hours using primary guidance. The
docked configuration was maneuvered manually tc null out guidance system
error needles using the thrust/translation controller assembly for roll
and pitch control and the attitude controller assembly for yaw control.
It was not difficult to control the docked configuration in this manner.
There was, however, some concern as to the effect the use of the thrust/
translation controller assembly would have on the trajectory. After the
error needles were nulled, attitude was maintained using primary guidance
with attitude contrel in "Auto."

Primary guidance system performsnce was nominal -during the midcourse
maneuver to & free return. There were no vehicle attitude excursions,
and the firing time was as predicted. The abort guidance system was not
powered up for this maneuver.

After the free-return midcourse correction, the spacecraft was ma-
neuvered manually to the passive thermal control mede attitudes. The
passive thermal control mode techniques consisted of maneuvering in the
pulse mode 90 degrees in yaw once each hour using the pulse mecde. To
conserve power, the attitude indicators were turned off after the initial
passive thermal contrcl mode was started, and attitude monitoring was ac-
complished by cbserving gimbal angle readouts from the display keyboard.

To conserve reaction control fuel when holding an sttitude, a wide
deadband was established using primary guidance. Because the platform
was not aligned with & passive thermal control mode reference matrix,
yawing the vehicle each hour resulted in inner and middle gimbal angle
deviations. The crew could not determine any standard procedure to keep
the middle angle constant during the maneuver. As the spacecraft maneu-
vered from one quadrant to the next, the same thrust/translation control-
ler assembly input would result in a different effect in controlling the
middle gimbal angle.

8.7.5 Platform Alignment
To assure the alignment accuracy of the lunar module platform for

the transearth injection meneuver, a check was made at T4 hours utilizing
the sun for reference. The method involved a pletform alignment program



8-11

(P52, option 3), loading the sun vectors, and utilizing an sutomatic atti-
tude maneuver. The null point was approximately one-half a sun diameter
to the right of the sun's edge. A two-diemeter offset was allowable, so
the platform was considered acceptable.

Initial outside observations through the lunar module windows indi-
cated that normal platform alignments using a ster reference would be ex-
tremely difficult because of the large amount of debris in the viecinity
of the spacecraft. This debris spparently originated during the tank
incident. A subsequent observation when the spacecraft was in the moon's
shadow indicated that an alignment at that time would have been feasible
because of the improved visual contrast. Crew training for sun/earth and
sun/moon alignments in the simulators should be emphasized to handle con-
tingencies such &s occurred during Apollo 13.

8.8 TRANSEARTH INJECTICN

Maneuvering to the proper attitude for transearth injection was done
manually with the thrust/translation controller assembly and attitude
controller assembly while tracking primary guidance error needles. The
error needles were nulled, and the spacecraft was then placed in the pri-
mary guidance automatic control mode to maintain attitude.

Guidance system performance was again nominal and there were no sig-
nificant attitude excursions. The throttle profile was started in the
idle position, then moved to 40 percent for 21 seconds, and finally to
full throttle for the remainder of the firing. The maneuver residuals
were 0.2, 0.0, and 0.3 ft/sec in the X, Y, and Z axes, respectively. The
gbort guidance system was powered up and was used to monitor both sttitude

and velocity change and agreed with primary system readouts throughout the
maneuver.

8.9 TRANSEARTH COAST

8.9.1 Coast Phase Activities

To establish a passive thermal control mode during initial transearth
coast, the spacecraft was manually maneuvered to the initial attitude by
nulling out the attitude error needles. In this position, spacecraft.
rates were monitored by the ground. When rates were sufficiently damped,
21 yaw-right pulse inputs were made to establish a vehicle rclling motion.
The resulting maneuver placed the apparent moon and earth motion horizon-
tal with respect to the lunar module windows.
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After the passive thermal control mode was estsblished, the lunar
module was powered down according to the contingency checklist for an
emergency power-down, Minor modifications were made to this procedure
to account for passive thermal control mode operation. The spacecraft
functions remaining were low-bit-rate telemetry, S-band tracking and
voice, caution and warning sensing, cebin repressurization capebility,
and the operation of the glycol pumps and suit fans.

A series of master alarms and battery caution lights was noted and
isolated to descent-stage battery 2. In view of the equal distribution
of the 12 amperes being supplied by all batteries in the powered down
mode, reverse current was ruled out, and because of the low current load,
overtemperature was alsc ruled out. Therefore, the problem was attributed
to a sensor (discussed in section 14.2.3). To prevent recurring alarms,
the master alarm circuit breaker was opened.

After the first descent propulsion maneuver, the ground provided a
work/rest schedule which kept either the Commander or the ILunar Module
Pilot on watch at &1l times. This schedule was followed at first with
the command module being utilized as a sleeping area. However, after
lunar module power-dowh, the command module cabin temperature decreased
to the point that it was unacceptable for use as g rest station. There-
after, all three crew members remained in the lunar module and any sleep
was in the form of short naps. The lunar module also cooled down to an
extent where sleep was not possible for approximately the last 16 hours.

The potable water aveilable wes used solely for drinking and re-
hydrating juices. No water was expended in rehydrastable foods, since
there was an ample supply of both prepared wetpacks and nonrehydratable
foods (breads, brownies, food cubes, etc.).

It became spparent that there were insufficient lithium hydroxide
cartridges in the lunar module to support the sbort mission, even with
allowable 'carbon dioxide levels extended to a partial pressure of 15 mm
Hg. With ground instructions, a system was constructed which attached
a command mcdule lithium hydroxide cartridge to each of two lunar module
suit hoses. The Commsnder's remaining hose was placed in the tunnel area
to provide fresh oxygen to the command module, while the Iunar Module
Pilot's remaining hose was positioned in the lunar module environmental
control area., At a later time, & second cartridge was added in series
to the cartridges initially installed, as shown in figure 6.7-1. In each
case, the drop in carbon dioxide levels reported by the ground showed
satisfactory operation of this improvised carbon dioxide removal system. -

Earlier, at approximately T3 hours, the command mcdule windows had
become nearly opaque with water droplets., This moisture contamination
continued tc increase, and at approximately 110 hours a thin wafer film
appeared on the interior command module structure itself, as well as on
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the lunar module windows. Despite this condensation because of the re-
duced cabin temperature, at no time did the humidity reach levels which
were uncomfortable to the crew. The moisture on the lunar module windows
disappeared shortly after power-up at approximately 135 hours. The con-
densation generally disappeared after parachute deployment, although the
structure remained ecold even after landing.

After the command module auxiliary urine dqump, used through the side
hatch, was exercised, the crew was requested by the ground to inhibit all
further overboard dumps so as not to interfere with navigation sightings.
This single dump was noted to seriously degrade visibility through the
command module hatch window. Since this restriction was never retracted,
all subsequent urine collections were stowed onboard. The containers
utilized for urine collections were the six lunar module urine transfer
bags, three command mecdule backup waste bags, the condensate container,
two water collection bags for the portable 1life support system, and three
urine collection devices. The command mcdule waste stowage compartment
appeared to be full with only seven fecal bags stowed in this area. Add-
ing to the waste stowage problem was the stiffness of the outer fecal
bags .

At approximately 105 hours, the crew performed a manual descent
propulsion maneuver to improve the entry angle. Since the primary guid-
ance and navigation system was powered down, alignment was accomplished
manually. The spacecraft was maneuvered to place the cusps of the earth's
terminator on the Y-axis reticle of the crewmen optical alignment sight.
The illuminated portion of the earth was then placed at the top of the
reticle. This procedure positioned the lunar module X-axis perpendicular
to the earth's terminator and permitted a retrograde maneuver to be per-
formed perpendicular to the flight path to steepen the entry angle. The
proper pitch attitude was maintained by positioning the sun in the top
center portion of the telescope. With the spacecraft in the proper atti-
tude, a body-axis alignment using the abort guidance system was followed
immediately by entry into an attitude hold mode. This sequence resulted
in attitude indications of zero for all axes and permitted use of the at-
titude error needles to maintain attitude. Attitude control during the
maneuver was performed by manually nulling the pitch and roll error nee-
dles. This maneuver necessarily required crew-cooperation, since the
Lunar Mcdule Pilot contrclled pitch and the Commander controlled roll.
Yaw attitude was maintained automatically by the abort guidance system.
The Command Module Pilot called out the engine start and stop times, and
the entire 1h-second firing was performed at 10 percent thrust. The en-
gine was shut down 1 second short of the calculated firing time to pre-
clude an overburn which might require use of minus-X thrusters and cause
plume impingement on the command module. The control and alignment tech-
niques to accomplish such a contingency midcourse maneuver are believed
to be satisfactory.
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The passive thermal control mode was reestablished by rolling 90 de-
grees with reference to the sbort-guidance-~driven attitude displays. This
maneuver placed the terminator parasllel to the X-axis of the crewmen opti-
cal alignment sight. Rates were nulled in pitch and roll with the thrust/
translation controller assembly. Yaw was again automatically controlled
by the gbort guidance system. Nulling rates to zero was impossible be-
cause of the inaccurate readout of the rate needles. When rates appeared
to be nulled, yaw control was placed in the reaction control pulse mode.
Twelve yaw-right pulses were then used to start the passive thermal con-
trol mode maneuver. Because rates could not be completely nulled, some
roll-pitch coupling was cbserved.

At approximately 109 hours, the burst disk in the supercritical
helium tank ruptured, as expected. The venting caused an unexpected re-
versal in the lunar module yaw rate [command module roll] during passive
thermal control at about twice the initial vealue and also introduced some
pitch motion. No attempt was made, however, to reestablish manually a
stable passive thermal control mode.

8.9.2 Entry Preparation

The unprecedented powered-down state of the command module required
generation of several new procedures in preparation for entry. The com-
mand module was briefly powered up to assess the operation of critical
systems using both onboard and telemetered instrumentation. Any required
pover in the command module had been supplied during transearth coast from
the lunar module through the umbilical connectors. It was through this
means that the entry batteries were fully charged, with battery A requir-
ing 15 hours and battery B approximately 3 hours. While these procedures
represented a radical departure from normal operation, all were under-
standable and easily accomplished to achieve the desired system resadiness.

Equipment transfer and stowage in both the command module and lunar
module was completed about T hours prior to entry, with the exception of
the cameras that were to be used for service module photography. At 6-1/2
hours before entry, command module activity included powering up the in-
strumentation and placing entry battery C on main bus A, with main bus B
still powered from the lunar module. The command module reaction control
thrusters were preheated for 20 mimutes, and all Instrumented engines were
observed to be above the minimum operating temperature 10 minutes after
heater operation was terminated.
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8.9.3 Final Midcourse Correction

Lunar medule powerup for the final midcourse correction maneuver
was performed according to the prescribed contingency checklist, with
only minor deviations furnished by the ground. Shortly afterward, the
lunar module windows cleared of moisture and the cabin temperature again
became comfortable. Approximately 6 hours before entry, the passive
thermal control mode was terminated and the spacecraft was maneuvered to
place the earth in the crewmen optical alignment sight with the termina-
tor parallel to the Y axis in preparation for the midcourse maneuver. At
that time, a sun/moon alignment was made. Acquisition of these bodies
was made by pitching up in a plane roughly parallel to the ecliptic plane.
The sun filter made viewing through the telescope reticle very difficult.
The spacecraft was contrclled by the Lunar Module Pilot from commands
given by the Commander, who responded when the reticle lines bisected the
moon and scolar disks. Three sets of marks were taken on each body. The
initial maneuver to the firing attitude for the final midcourse correction
was done manually using the earth as a reference in the same manner as the
previous maneuver. This procedure presented no problems, even though the
earth disk was considerably larger at this time.

With primary guidance avalilable, guidance system steering was man-
ually followed to trim the spacecraft attitudes for the maneuver. Al-—
though the displayed attitudes looked favorable in comparison to ground-
supplied and out-the-window readings, the primary guidance steering
needles read full scale left in roll and yaw (section 6.h). At about
137 hours b0 minutes, the lunar module reaction control system was used
to provide a 2.9-7t/sec velocity correction. The maneuver was completed
using manusl pitch and roll control and abort guidance yaw control in s
manner similar to that for the previous midcourse correction.

8.9.4 Service Module Separation and Photography

Following the lunar module maneuver to the service module separation
attitude, the command module platform heaters were activated, the command
module reaction control system was pressurized, and each individwal thrust-
er was fired. An abort guidance attitude reference was provided with all
zeros displayed on the attitude error needles. The lunar module was
placed in en attitude hold mode using the abort guidance system; X-axis
translation was monitored on the displays. After the reaction control
system check was completed, the Commander conducted a plus-X translation
maneuver of 0.5 ft/sec, followed immediately by service module jettison.
The pyro activation was heard and a minus 0.5-ft/sec translation maneuver
was immediately commenced to remove the previously added velocity and
preclude service module recontact. The jettiscon dynamics caused the un-
docked vehicles to pitch down sbout 10 degrees. Control was then switched
to primary guidance minimum impulse, and a pitchup maneuver was started to
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sight the service module in the docking window. The lightened spacecraft
combination was easily maneuvered using attitude control in both the man-
ual minimum-impulse and automatic attitude-hecld modes.

The service module first appeared in the docking window at a dis-
tance of about 80 feet. The entire bay Y4 outer panel was missing, and
torn Mylar insulation was seen protruding from the bay. Because of the
brilliant reflections from the Mylar, it was difficult to see or photo-
graph any details inside the bay. Initial photography of the service
module was conducted through the docking window using the command module
TO-mm camera and an 80-mm lens. This camera, the 16-mm sequence camera
with a T5-mm lens, and the command module electric still camera with a
250-mm lens were then coperated while viewing through the right-hand win-
dow. Camera settings were made according to ground instructions. No
magazine designation was made by the ground for the sequence camera, so
the surface color film was used.

Upon completion of photography., the two docked vehicles were maneu-
vered back tc the service module separation attitude in preparation for
the command module alignment. Star observation through the command mod-
ule cptiecs in this attitude was poor because of light reflecting from the
lunar medule, and the Commander varied the pitch attitude by approximately
20 degrees in an attempt to improve star visibility. These attitude ex-
cursions, however, were not effective, and the spacecraft was returned
to the original separaticn attitude for the command module alignment.

8.9.5 Command Module Activation

At 2-1/2 hours prior to entry, the command module was fully powered
up and lunar module power transfer was terminated. After command module
computer activation, the unfavorable spacecraft agttitude delayed communi-
cations sighal lockup and the ensuing ground uplink commands. The stable
platform was coarse aligned to ground-supplied reference angles, and an
optical fine alignment made using two stars. Particles venting from the
command module umibilical area impeded command module optics operation.
With the lunar module attached to the command module and the command
module optics pointed away from the sun, individual stars were barely
visible through the optics. Alsc sun reflections from the lunar mcdule
sublimator and the nearest reaction control quad prevented positive iden-
tification of constellations.

8.9.6 Lunar Module Undocking

The maneuver to the undocking attitude was made by the lunar mecdule.
Time consuming operations were followed toc avoid gimbal lock of both space-
craft platforms. Because of the difference in alignments between the two
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spacecraft, considerable difficulty was encountered in maneuvering to the
lunar module undocking attitude without driving the command module plat-
form into gimbal lock. The meneuver required a complicated procedure
using the lunar module platform and close cooperation between the Com-
mander and Command Mocdule Pilot. The resulting maneuver also used up con-
siderable lunar module reaction control fuel. The final undocking atti-
tude was very close to commend module gimbal lock attitude. A different
command module alignment procedure should have been used to prevent the
probability of gimbal lock.

Hatch closeout in both spacecraft was normal, and a successful com-
mand module hatch integrity check was made, with a differential pressure
of 3.4 psi. The command module environmental control and autopilot sys-
tems were activated, snd the lunar module was undocked 1 hour before en-
try. Lunar module Jettison was slightly louder than service mecdule jet-
tison and the lunar module was stable as it translated awgy using only
tunnel pressure. While controlleble by a single reaction control engine
pulse, there was & continuous pitch-up torque on the command module which
persisted until entry.

8.10 ENTRY AND LANDING

The entry attitude and platform alignment were confirmed by a suc-
cessful sextant star check and moon ccculation within 1 second of the
predicted time. The pre-entry check and initialization of the entry
monitor system were normal. However, entry monitor system operation was
initiated manually when the 0.05g light remained off 3 seconds after the
actual 0.05g time (as discussed in section 1k4.1.5.). In addition, the
entry monitor system trace was unexpectedly narrow and required excessive
concentration to read. The guided entry was normal in all respects and
was characterized by smooth control inputs. The first acceleraticn peak
reached spproximately 5g.

Landing decelerations were mild in comparison to Apollo 8, and the
spacecraft remained in the stable I flotation attitude after parachute
release. Recovery proceeded rapidly and efficiently. Standard Navy life
vests were passed to the crew by recovery personnel. For ease of donning
end egress, these are prefersble to the standard underarm flotation equip-
ment. They would also quite effectively keep an unconscious crewman's
head out of the water.



9.0 BIOMEDICAL EVALUATION

This section is a summary of Apollo 13 medical findings, based on
preliminary analyses of biomedical data. From the medical point of view,
the first 2 days of the Apollo 13 mission were completely routine. The
biomedical data were excellent, and physiological parameters remained
within expected ranges. Daily crew status reports indicated that the
crewmen were obtaining adequate sleep, no medications were taken, and
the radistion dosage was exactly as predicted.

9.1 BIOLNSTRUMENTATION AND PHYSIOLOGICAL DATA

The biomedical data were excellent in quality during the period
from launch to the occurrence of the inflight incident. Physiological
data for the remainder of the mission were very scant. The command
module was completely powered down, and this eliminated simultaneous
biomedical monitoring capability. In the lunar module, only one electro-
cardiogram signal for one crewman at a time can be monitored. However,
even these medical data were sacrificed to improve air-to-ground commun-
lcations.

Prior to the abort condition, physioclogical parameters were well
within expected ranges. Just prior to the incident, heart and respira-
tory rates of the crewmen were as follows.

: Heart rate, Respiratory rate,
Crevman beats/min breaths/min
Commander 68 18
Command Module Pilot 65 15
Lunar Module Pilot T2 12

At 55:5h:54, a telemetry dropout was observed. Immediately after
the incident, crew heart rates ranged from 105 to 136 begts/min. These
heart rates are well within normal limits and are indicative of stress
and an increased workload.

During the entry phase, biomedical data on the Command Module Pilot
and Lunar Module Pilot were available. The Command Module Pilot's heart
rate ranged from 60 to 70 beats/min. The Lunar Module Pilot's heart rate
ranged from 100 to 125 beats/min, which in contrast to his basal rste was
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an indication of an inflight illness detected after flight. The Commander
had removed his biocharness shortly after the emergency incident; hence,
no biomedical data were available from him during the entry.

9.2 INFLIGHT HISTORY

9.2.1 Adaptation to Weightlessness

The Commander and the Command Module Pilot both reported a feeling
of fullness in the head lasting for several hours on the first day of
the mission. The Lunar Module Pilot reported & similar feeling and also
that he felt like he was "hanging upside down." The Commander reported
that all crewmen had red eyes the first day of the mission.

Upon awakening on the second day of the mission, the Lunar Module
Pilot complained of a severe headache., He took two aspirin, ate break-
fast, and became immediately engaged in unrestrained physical activity.
He then became nauseated, vomited once, and lay down for several hours.
He then experienced no further nausea. The Lunar Module Pilot continued
to take two aspirin every 6 hours to prevent recurrence of the headache.
After the inflight incident, he took aspirin on only one occasion.

9.2.2 Cabin Environment

The major medical concern, recognized immediately after the abort
decision, was the possibility of carbon dioxide buildup in the lunar
module astmosphere. Since the physiological effects of increased carbon
dioxide concentration are well known and readily recognizable with proper
biomedical monitoring, the allowable limit of carbon dioxide buildup was
increased from the nominal 7.6 to 15mm Hg. The carbon dioxide level was
above T.6mm Hg for only a b-hour period, and no adverse physiological
effects or degradation in crew performance resulted from this elevated
concentration. Modified use of the lithium hydroxide cartridges (sec-
tion 6.7) maintained the carbon dioxide partial pressure well below lmm
Hg for the remainder of the flight.

9.2.3 Sleep

The crew reported sleeping well the first 2 days of the mission.
They all slept about 5-1/2 hours during the first sleep period. During
the second period, the Commander, Command Module Pilot, and Lunar Module
Pilot slept 5, 6, and 9 hours, respectively. The third sleep pericd was
scheduled for 61 hours, but the oxygen tank incident at 56 hours pre-
cluded sleep by any of the crew until approximately 80 hours.
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After the incident, the command module was used as sleeping quarters
until the cabin temperature became too ccld. The crew then attempted to
sleep in the lunar module or the docking tunnel, but the temperature in
these areas slso dropped too low for prolonged, sound sleep. In addition,
coolant pump noise from the lunar module and frequent communications with
the ground further hindered sleep. The totel sleep cbtained by each crew-
man during the remeinder of the mission after the incident is estimated
to have been 11, 12, and 19 hours for the Commander, Command Module Pilot,
and Lunar Mecdule Pilot, respectively.

9.2.4 Water

Preflight testing of both command meodule and lunar module water sup-
plies revealed no significant contaminants. The nickel content from sam-
ples taken at the command module hot water port was 0.05 mg/l. Elevated
nickel concentration has been a consistent finding in previous missions
and has been ruled acceptable in view of no detrimental effects on crew
physiology. There was a substantial buildup in total bacterial count
from the time of final filling of the command module potable water system
until final preflight sampling 24 hours prior to launch. This count was
deemed acceptable under the assumption the first inflight chlorination
would reduce the bacterial population to specification levels., Preflight
procedures will be reviewed to investigate methods of preventing growth
of organisms in the command module water system during the countdown
phase. The inflight chlorination schedule was followed prior to the in-
cident, after which the potable water was not chlorinated again.

The crew rationed water and used it sparingly after the oxygen tank
incident. Not more than 24 ounces of water were consumed by each crewman
after the incident. The crew repcrted that the juice bags contained about
20 percent gas, but that this amount was not enough to cause any distress.

9.2.5 JFood

The flight menus were similar to those of prior Apollo missions and
were designed to provide approximstely 2100 kilocalories per man per day.
The menus were selected on the basis of crew preferences determined by
preflight evalustion of representative flight foods. There were no mod-
ifications tc the menu as a result of the late crew change. New food
items for this mission included meatballs with sauce, cranberry-orange
relish, chicken and rice soup, pecans, natural orange Juice crystals,
peanut butter, and jelly. Mustard and tomato catsup were also provided
for the sandwiches.



g-4

The crew followed the flight menus prior to the inflight incident
and maintained a complete log of foods consumed.  To conserve water dur-
ing the abort phase, the crew consumed cnly those foods which did not
require water for rehydration. The crew drank julces in preference to
plain water to help maintain their electrolyte balance.

The crew's comments sbout the guality of the food were generally
favorable, but they reported that food packaging and stowage could be
improved. The crew encountered scme difficulty in removing the meal
packages from the lower equipment bay food container snd in replacing
some uneaten food items. Preflight briefings of future crews shoculd
alleviate these difficulties.

Syneresis, or separation of a liquid from a solid, occurred in scme
of the canned sandwich spreads, particularly the ham salad. The free
ligquid escaped when the can was opened, and the salad was too dry to
spread. The crew commented on the positive pressure in the bread pack-
ages, which was expected since there was only & slight vacuum on these
packages. ‘Any additional vacuum would compress the bread to an unaccept-
able state, and if the packages were punctured, the bread would become
dry and hard. The crew recommended a change which has been implemented
wherein Velcro patches will be attached te the bread, mustard, and catsup
packages.

9.2.6 Radiation

The perscnal radiation dosimeters were inadvertently stowed in the
pockets of the crewmen's suits shortly after lift-off. The Command Mod-
ule Pilot's dosimeter was unstowed at 23 hours and was hung under the
command and service module optics for the remainder of the mission. The
final reading from this dosimeter yielded a net integrated (uncorrected)
dose of 410 mrad. The other two dosimeters yielded net doses of 290 and
340 mrad.

The Van Allen belt dosimeter registered a maximum skin dose rate of
2,27 rad/nr and a maximum depth dose rate of 1.35 rad/hr while ascending
through the belt at about 3 hours. Dose rates during descending belt
passage and total integrated doses were not obtained because of command
module power-down and later, by the absence of high-bit-rate telemetry
during the entry phase.

The crewmen were examined by total body gamma spectroscopy 30 days
before flight and 6 and 16 days after recovery. Analyses of the gamma
spectrum data for each crewman revealed no induced radiocactivity. How-
ever, the analyses did show a significant decrease in total body potassium
(k*?) for each crewman as compared to preflight values. Total body potas-
sium values determined on the second postflight examination had returned
to preflight values for each crewman,
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The absorbed dose from ionizing radiation was approximately 25C mrad,
which is well below the threshold of detectsble medical effects. The
crew-absorbed dose from the neutron component of the SNAP-27 (part of ex-
periment package) radiation cannot be determined quantitatively at this
time. Preliminary eveluations indicated that it was also well below the
threshold of detectable medical effects.

- 9.2.7 Medications

The crew attempted to use the Afrin spray bottles but reported they
were unable to obtain sufficient spray, as discussed in section 14.3.3.
The crew also reported that the thermometer in the medicel kit did not
register within scale. Postflight analysis of the medical kit has shown
that the thermometer cperates properly and a procedural error resulted
in the fallure to obtain a correct cral temperature inflight. Medica-
tions used by each of the crewmen are shown in the following table:

Crevman Medicetion Time of use
Commander 1 Aspirin Unknown
1l Dexedrine . 2 or 3 hours prior to
entry
Command Module Pilot 1 Iomotil After 98 hours
2 Aspirin Unknown
1 Dexedrine-Hycscine | 1 or 2 hours prior to
entry
Lunar Module Pilot 2 Aspirin every Second mission day until
6 hours the incident
1 Dexedrine-Hyoscine{ 1 or 2 hours prior to
entry

9.2.8 Visual Phenomena

The crew reported seeing point flashes or stresks of light, as had
been previously observed by the Apollo 11 end 12 crews. The crewmen
were aware of these flashes only when relaxed, in the dark, and with
their eyes closed. They described the flashes as "pinpoint novas,”
"roman candles," and "similar tc traces in a cloud chamber." More point
flashes than streaks were observed, and the color was always white.

Estimates of the frequency ranged from 4 flashes per hour to 2 flashes
per minute,



9.3 PHYSICAL EXAMINATIONS

Preflight physical examinations of both the primary and backup crews
were conducted 30 days prior to launch, and examinations of the primary
crew only were conducted 15 and 5 days prior to launch. The Lunar Module
Pilot suffered a sore throat 18 days before launch, and throat swabs from
all three crewmen were cultured on two occasions. Since the organism
identified was not considered pathogenic and the crew showed no symptoms
of 1llness, no treatment was necessary.

Eight days before flight, the primary Command Module Pilot was ex-
posed to rubella (German measles) by a member of the backup crew. The
physical examinagtion 5 days before flight was normal, but laboratory
studies revealed that the primary Command Module Pilot had no immunity
to rubella, Consequently, on the dgy prior to launch the final decision
was made to replace the primary Command Module Pilot with the backup Com-
mand Module Pilot. A complete physical examination had been conducted on
the backup Command Module Pilot 3 days before flight, and no significant
findings were present in any preflight histories or examinations.

Postflight physical examinations were conducted immediately after
recovery. These physical examinations were normal, although all crew-
men were extremely fatigued and the Lunar Module Pilot had a urinary
tract infection. While standing during portions of his postflight physi-
cal examination, the Lunar Module Pilot had several episodes of dizziness,
which were attributed to fatigue, the effects of weightlessness, and the
urinary tract infection. The Commander, Command Module Pilot, and Lunar
Module Pilot exhibited weight losses of 14, 11, and 6.5 pounds, respec-
tively. In the final 4 or 5 hours of the flight, the Lunar Module Pilot
drank considerably more water than did the other crewmen and possibly
replenished his earlier body fluid losses.

The Command Module Pilot had a slight irritation at the site of the
superior sensor on the upper chest, but the Commander and Lunar Module
Pilot had no irritation at any sensor sites.
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10.0 MISSION SUPPORT PERFORMANCE

10.1 FLIGHT CONTROL

The operational support provided by the flight control team was sat-
isfactory and timely in safely returning the Apollo 13 crew. Only the
inflight problems which influenced flight control operation and their
resultent effects on the flight plan are discussed.

Prior to launch, the supercritical-helium pressure in the lunar
module descent propulsion system increased at asn sbnormally high rate.
After cold sosk and venting, the rise rate was considered acceptable for
launch. At 56 hours during the first entry into the lunar module, the
rise rate and pressure were reported to be satisfactory; therefore, a
special venting procedure was not required.

A master ceution and warning alarm at 38 hours indicated the hydro-
gen tank pressures were low. As a result, it was planned to use the
cryogenic tank fans more often than scheduled to provide a more even
distribution of fluid and to stabilize heat and pressure rise rates.

The two tanks containing cryogenic oxygen, used for fuel cell opera~
tion and crew bresathing, experienced a problem at about 56 hours, as de-
scribed in section 14.1.1 and reference 1. This condition resulted in
the following flight control decisions:

a. Abort the primary mission and attempt a safe return to earth as
rapidly as possible.

b. Shut down all command and service module systems to conserve
consumables for entry.

¢. Use the lunar module for life support and any propulsive maneu-
vers.

Powering down of the command and service modules and powering up of
the lunar module were completed at 58:40:00. The optimum plan for a
safe and quick return required an immediate descent engine firing to a
free-return circumlunar trajectory, with a pericynthion-plus~2-hour ma-
neuver (transearth injection) to expedite the landing to sbout 142:30:00.
Two other midcourse corrections were performed, the first using the de-
scent engine. Only essential life support, navigation, instrumentation,
sand communication systems were operated to maximize electrical power and
cooling water margins. Deteailed monitoring of all consumables was con-
tinuously maintained to assess these margins, and the crew was always
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advised of their consumables status. A procedure was developed on the
ground and used by the crew to allow use of command medule lithium hy-
droxide cartridges for carbon dioxide removal in the lunar module environ-
mental control system (see section 6.8). The passive thermal control

mode was established using the lunar module reaction control system and
was satisfactorily maintained throughout transearth coast.

A major flight control function, in addition to the monitoring of
gystems status and maintaining of consumable quantities above red-line
values, was to determine the procedures to be used immediately prior to
and during entry. After satisfactory procedures were established, they
were verified in a simulator pricr to advising the crew. These procedures
called for first separating the service module, remaining on lunar module
environmental control and power as late as possible, coaligning the two
platforms, and separating the lunar module using tunnel pressure. The
command module tunnel hatch was installed and a leak check was performed
prior to lunar module undocking, which occurred about 1 hour before entry.
Al]l spacecraft operations were normal from undocking through landing,
which occurred very close to the established target.

10.2 NETWORK

The Mission Control Center and the Manned Space Flight Network pro-
vided excellent support throughout this aborted mission. Minor problems
occurred at different sites around the network, but all were corrected
with no consequence to flight control support. Momentary data losses
occurred seven different times as a result of power amplifier faults,
computer processor executive buffer depletion, or wave guide faults. On
each occasion, data lock-up was regained in just a few minutes.

10.3 RECOVERY OPERATIONS

The Department of Defense provided recovery support commensurate with
mission planning for Apollo 13. Because of the emergency which resulted
in premature termination of the mission, additional support was provided
by the Department of Defense and offers of assistance were made by many
foreign nations, including Fngland, France, Greece, Spain, Germany,
Uruguay, Brazil, Kenya, the Netherlands, Nationalist China, and the Soviet
Union. As a result of this voluntary support, a total of 21 ships and
17 aircraft were availsble for supporting an Indian Ocean landing, and
51 ships and 21 aircraft for an Atlantic Ocean landing. 1In the Pacific
Ocean, there were 13 ships and 17 aircraft known to be available over and
above the forces designated for primary recovery support.
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Support for the primary recovery area consisted of the prime recovery
ship, USS Iwo Jima, five helicopters from the Iwo Jima, and two HC-130H
rescue aircraft. Later, the experimental mine sweeper, USS Granville
Hall, and two HC-130H aircraft were added to the end-of-mission array.

One of the helicopters, designated "Recovery," carried the flight sur-
geon, and was utilized for retrieval of the crew. Two of the helicopters,
designated "Swim 1" and "Swim 2," carried swimmers and the necessary re-
covery equipment. A fourth helicopter, designated "Photo" was used as

a photographic platform, and the fifth helicopter, designated "Relay,"
served as a communications relsy aircraft. The four aircraft, designated
"Samoa Rescue 1, 2, 3, and 4," were positioned to track the command mod-
ule after exit from blackout, as well as to provide pararescue capability
had the command module landed uprange or downrange of the target point.
The USS Granville Hall was positioned to provide support in the event
that & constant-g (backup) entry had to be flown. Table 10.3-I lists all
the dedicated recovery forces for the Apecllc 13 mission.

TABLE 10.3-I.- RECOVERY SUPPORT

Supporta
Lending area Nomber Unit Remarks
Launch site 1 LCU Landing craft utility (landing craft with command
module retrieval capability) - USS Paiute
1 HH-3E Helicopter with para-rescue team staged from Patrick
A¥FB, Florida
2 HE-53C | Helicopters capable of lifting the command module;
each with para-rescue team staged from Patrick AFB,
Florida
1 ATF
2 SH-3 Helicopters staged from Norfolk NAS, Virginia
Launch abort 1 oD USS New
3 HC-130H | Fixed wing aircraft; one each staged from McCoy AFB,
Florida; Pease AFR, New Mexico; and Lajes AFB,
Azores
Earth orbit 2 DD USS New
2 HC-130H | Fixed wing aircraft staged from Ascension
Primary end-of-mission, 1 LPH USS Iwo Jima
Mid-Pacific earth 1 DD USS Benjamin Stoddert
orbital, and deep- 8 SH-3D Helicopters staged from USS Iwo Jime
space secondary 2 HC-130H | FPixed wing aircraft staged from Hickam AFB, Hawaii

Srotal ship support = 5
Total aircraft support = 23
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10.3.1 Command Module Location and Retrieval

The Iwo Jima's position was established accurately using a satellite
navigation system. A navigation fix was obtained at 1814 Gm.t.,
April 17, 1970, and the position of the ship at spacecraft landing was
dead-reckcned back to the time of lending and determined to be 21 degrees
34.7 minutes south latitude and 165 degrees 23.2 minutes west longitude.
At landing a radar range of 8000 yards and & visual bearing of 158.9 de-
grees east of north (true heading) were obtained from which the command
module landing point was determined to be 21 degrees 38 minutes 24 sec-
onds south latitude and 165 degrees 21 minutes L2 seconds west longitude,
This position is judged to be accurate to within 500 yvards.

The ship-based aircraft were deployed relative to the Iwo Jima and
were on station 20 minutes prior to landing. They departed station to
commence recovery activities upon receiving notice of visual contact with
the descending command module. Figure 10.3-1 depict an approximation of
the recovery force positions just prior to the sighting of the command
moduie.

NASA-5-70-5835

21°20' l I
18° T Swim 2
| Rescue 4o r
g 20 Rescue 38
= F | USS Iwd Jima
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Figure 10.3-1.- Recovery support at earth landing.
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The first reported electronic contact by the recovery forces was
through S-band contact by Samoca Rescue 4. A visual sighting report by
the Recovery helicopter was received and was followed shortly thereafter
by sguisition of the recovery bescon signal by the Recovery, Photo, and
Swim 1 helicopters. Fuel dump was noted and voice contact was made with
the descending spacecraft, although no latitude and longitude data were
received. The command module landed at 1807 G.m.t. and remained in the
stable 1 flotation attitude. The flashing light was operating and the

inflaticon of the uprighting system commenced akout 10 minutes subsequent
to lending.

After confirming the integrity of the command module and the status
of the crew, the Recovery helicopter crew sttempted to recover the main
parachutes with grappling hooks and flotation gear prior to their sinking.
Swim 1 and Swim 2 helicopters arrived on scene and immediately proceeded
with retrieval. Swim 2 deployed swimmers to provide flotation to the
spacecraft, and Swim 1 deployed swimmers to retrieve the apex cover, which
was located upwind of the spacecraft., The flight crew was onboard the
recovery helicopter T minutes after they had egressed the command module,
and they arrived aboard Iwo Jima at 1853 G.m.t.

Command module retrieval tock place at 2] degrees 39.1 minutes south
latitude and 165 degrees 20.9 minutes west longitude at 1936 G.m.t. One
main parachute and the apex cover were retrieved by small boat and brought
aboard.

The flight crew remained aboard the Iwo Jima overnight and were flown
to Pago Pago, Samoa, the following morning. A C-141 airecraft then took
the crew to Hawaii, and following a ceremony and an overnight stay, they
were returned to Houston.

Upon arrival of the Iwo Jima in Hawaii, the command meodule was off-
loaded and taken to Hickam Air Force Base for deactivation. Two and one
half days later, the command module was flown to the manufacturer's plant
at Downey, Californias aboard a C-133 sircraft.

The following is a chronological listing of events during the recovery
operations.
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R
April 17, 1970
S-band contact by Samoa Rescue b 1801
Visual contact by Swim 2 1802
VHF recovery beacon contact by Recovery/Swim 1
helicopters
Voice contact by Recovery helicopter 1803
Visual contact by Relay/Recovery helicopters/ 1803
Iwo Jima

Command module landed, remained in stable I 1807

Swimmers deployed to retrieve main parachutes 1809

First swimmer deployed to command module 1816

Flotation collar inflated 1824

Life preserver unit delivered to lead swimmer 1831

Command module hatch opened 1832

Helicopter pickup of flight crew completed 1842

Recovery helicopter on board Iwo Jims 1853

Command module secured aboard Iwo Jima 1936
April 18

Flight crew departed Iwoc Jima 1820
. April 20

Flight crew arrival in Houston 0330
April 2k

Iwo Jima arrival in Hawaii 1630
April 25

Safing of command module pyrotechnics completed 0235
April 26

Deactivation of the fuel and oxidizer completed 1928
April 27

Command module delivered to Downey, California 1400
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10.3.2 Postrecovery Inspection

Although the standard format was followed during the deactivation
and postrecovery inspection of the commend module, it should be noted
that extreme caution was taken during these operations to insure the
integrity of the command module for postflight evaluation of the anomaly.
After deactivation, the command module was secured and guarded.

The following discrepancies were noted during the postrecovery
inspection:

a. Some of the radioluminescent disks were broken.

b. The apex cover was broken on the extravehicular handle side,
¢. The docking ring was burned and broken.

d. The right-~hand roll thruster was blistered.

e, A yellowish/tan film existed on the outside of the hatch win-
dow, left and right rendezvous windows, and the right-hand window.

f. The interior surfaces of the command module were very damp and
cold, assumed to be condensation; there was no pocling of water on the
floor.

g. Water samples could not be taken from the spacecraft tanks (dis-
cussed in section 5.8).

h. The postlanding ventilation exhaust valve was open and the inlet
valve was closed; the postlanding ventilation valve unlock handle was
apperently jammed between the lock and unlock positions (section 14.1.2).

i. There was more and deeper heat stresking in the area of the
compression and shear pads than has been normally observed.
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11.0 EXPERIMENTS
11.1 ATMOSPHERIC ELECTRICAL PHENCMENA

As a result of the electrical disturbances experienced during the
Apolle 12 launch, the value of further research in this area was recog-
nized and several experiments were performed prior to and during the
Apolleo 13 launch to study certsin aspects of launch-phase electrical phe-
nomena. The separate experiments consisted of measurements of the atmos-
pheric electric field, low-frequency and very-low-frequency radio noise,
the air/earth current density, and the electrical current flowing in the
earth's surface, all of which result from perturbations generated by the
launch vehicle and its exhaust plume. The analysis of the Apcllo 12
lightning incident is reported in reference 3.

11.1.1 Electric Field Measurements

Ag shown in figures 11.1-1 and 11.1-2, a network of nine calibrated
electric field meters was installed in the area to the north and west of
the launch site. B3Seven of the field meters were connected to multiple
channel recorders sc that any excursions of the electric field intensity
could be measured over a wide range of values. A special device was op-
erated at site S5, located on the beach L4 miles northwest of the launch
site. This device was installed to measure rapid changes in the electric
field and was used, together with a sferics detector, to sense the electro-
magnetic radiation generated by lightning or other significant electrical
discharges. '

Illustrative data from the field instruments during launch are shown
in figure 11.1-3. Very large perturbations of the normal electric field
were recorded on meters at sites 1, 2, and 3 located nesar the launch
tower. First, there was a rapid increase in the positive direction,
followed by a slower negetive decrease. Data tsken at site 4, however,
did not indicate any significant variations in field intensity. Excellent
records at several sensitivity levels were obtained at site 7. The field
perturbation immediately following launch rose to a maximum of 1200 volts/
meter in about 25 seconds. The direction of field change then reversed,
and a negative peak of some 300 volts/meter was reached in sbout 115 sec-
onds. Thereafter, the field gradually returned to the unperturbed value.

At site 6, the record was similar to that for site 7 with an initial
positive excursion followed by a slower negative change. At this station,
however, there were large fluctuations superimposed on the record, as
shown in figure 11.1-3(b). These fluctuations could have been caused by
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NASA-5-70-5836

New Mexico Tech

Field Distance Field Distance
mill from mill from

no. vehicle, ft no. vehicle, ft
1 1360 6 1310

2 2400 7 1250

3 4920 8 2600

4 7220 9 5740

5 23 700

Figure 11.1-1.- Field meter locaticn in the launch site area.
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Figure 11.1-2.- Field meter locations in the proximity
of the launch complex.

gravel and dust stirred up by the exhaust of the launch vehicle engine.
After launch, a quantity of such debris was found near the surface of the
field meter and its surrounding area. After the oscillations had subsided
at T plus 40 seconds, there was a large negative field of approximately
minus 3000 volts/meter which probably resulted from the exhaust and steam
clouds that tended to remain over site 6.

Because of access restrictions to sites 8 and 9, the corresponding
recorders were started several hours prior to launch and unfortunately
had stopped before lift-off. However, substantial positive and negative
field perturbations found on the stationary parts of the records were
greater than anything found on the moving portion. Comparison of these
records with those from sites 6 and T confirmed that the only large field
perturbations were those accompanying launch. Conseguently, the peak
excursions of the records at sites 8 and 9 could be confidently asscciated
with the maximum field perturbations occurring just after lift-off.
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Figure 11.1-3.- Electrical discharge data for the Apollo 13 launch.



11-5

NASA-S-70-5839

3000

1000

Site b
J - {400 meters south)
e

|

hw

- 2000 [ 4 P E—

Etectric field intensity, volts/cm

0 2 40 60 80 100 120 140 160 180 200
Time, hr:min, e.s.1. April 11 1970

(b) 8ite 6.
Figure 11.1-3.- Concluded

No significant perturbation in the electric field was produced by
the launch cloud at staticns 4 or 5, although small-scale fluctuations,
apparently resulting from vibrations, can be seen on the records of the
fine weather field at both stationms.

The field-change and sferics detectors at site 5 gave no indication
of any lightning-like discharge during launch, although sporadic signals
were later recorded during the afternoon of launch day. These signals
probably came from lightning in a cold front which was stalled scme dis-
tance to the northwest of the launch site and which passed over the launch
site on April 12.

Field meter records indicate the Apolle 13 wvehicle carried aloft a
net positive charge and that the trailing exhsust gases were negatively
charged (fig. 11.1-L)}. Initial analysis indicates the total charge Q
carried by the vehicle was about 0.04 coulomb. If the capacitance of
the launch vehiclie is about 100 picofarads, the vehicle is then at a po-
tential of 4 million volts. A stored charge of 0.0L4 coulomb at a poten-
tial of 4 million volts provides an electrostatic potential energy of
160 000 joules. Although this energy is much less than that dissipated
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NASA-S-70-5840

Figure 11.1-4.~ Electrical charge characteristics.

in a natural lightning discharge, the level is still considerable and
could significantly iricrease the potential hazard in an otherwise mar-
ginal weather situation. These numbers are consistent with the electro-
static discharge analysis performed on the Apollo 12 lightning incident.
Engines in Jjet alrcraft have been observed to produce similar charging
effects. ‘

The electrostatic potential developed on an aircraft is caused by
the engine charging current, which, in turn, is balanced by the corona
current loss from the aircraft. For a conventional jet aircraft, this
equilibrium potential approaches a million volts. For the Saturn V
launch vehicle, the charging current probably is far greater than that of
a jet aircraft. Furthermore, since the surface of an aircraft probably
has more external irregularities than a launch vehicle, the charging
current is higher and the corona current loss is typically less for a
launch vehicle than for an aircraft. Both of these effects tend to make
the equilibrium potential for the Saturn vehicle larger than that of a
Jet aircraft; therefore, several million volts does not seem to be an
unreasonable estimate for the electrostatic potential of a Saturn V.
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11.1.2 Very-Low and Low-Frequency Radio Noise

To monitor the low-frequency radio noise, a broad-band antenna sys-
tem was used at site T to feed five receivers, tuned respectively to
1.5 kHz, 6 kHz, 27 kHz, 51 kHz, and 120 kHz.

During launch, a sudden onset of radio noise was observed almost
coincidently with the start of the electric field perturbation. This
onset was very well marked on all but the 1.5 kHz channel. TFollowing
onset, the noise levels at 120 and at 51 kHz tended to decrease slowly
in intensity for some 20 seconds. However, the noise levels at 27 and
at 6 kHz increased and reached their maxima after about 15 seconds.
Furthermore, substantial noise at 1.5 kHz was first apparent at 5 sec-
onds after lift-off and also peasked out in about 15 seconds.

If the Saturn V vehicle is charged to a potential of several million
volts, corcna discharges will be produced which, in turn, generate radio
noigse. The onset of these discharges should occur very soon after lift-
off and reach a maximum when the launch vehicle is still close to the
ground. Radio noise records strongly support this conclusion. The sud-
den onset of the noise probably corresponds closely to lift-off. It is
interesting that, at about 15 seconds after lift-off, the ncise became
enhanced at the lower rather than the higher frequencies. This phenomenon
implies that larger discharges occur at these times. The most intense
discharges would be expected to occur scon after the launch vehicle and
its exhsust plume clear the launch tower.

11.1.3 Measurement of Telluric Current

The experiment to measure telluric current consisted of an electrode
placed close to the launch site and two electrodes spaced approximately
2500 feet from the base electrode at a 90-degree included angle (shown
in figure 11.1-2). The telluric current system failed to detect any launch
effects. It was expected that the current would show an increase until
the vehicle exhaust plume broke effective electrical contact with ground.
The high density of metallic conductors in the ground near the launch site
may have functioned as a short circuit, which would have negated the de-
tection of any changes in the current level.

11.1.4% Measurement of the Air/Farth Current Density

Three balloons containing instruments designed to measure the air/
earth current density were launched: at 6:52 p.m. on April 9, 1970, and
at 1:14 p.m. and 1:52 p.m. on April 11, 1970. The first two balloons
provided the "fair weather" base for the experiment. At lift-off, the
third balloon was about 12.2 miles southeast of the launch site at an
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eltitude of 20 000 feet. Forty-five seconds after lift-off, the current
density, which had been oscillating at a frequency of sbout 15 cycles
per minute, showed a marked increase in amplitude. This variation in
current was again observed when the balloon reached an altitude between
40 000 and 50 000 feet. The frequency of the cbserved current variation
was also noted from the balloon released at 1:14 p.m. The cause of the
oscillating current and the enhancement thereof are not yet understcod.

11.2 EARTH PHOTOGRAPHY APPLIED TO GEOSYNCHRONOUS SATELLITES

The determination of the wind field in the atmosphere is one of the
prime requirements for accurate long-range numerical weather prediction.
- Wind fields are also the most difficult to measure with the desired sam-
ple density (as discussed in ref. L). The output of the geosynchronous
Advanced Technology Satellites I and IIT is now being used as & crude
estimate of wind fields by comparing the translation of c¢louds between
successive frames 20 minutes spart. This comparison does not define the
wind field, however, as & function of height above the surface, which is
an important restriction to dats application. The ability to determine
the height of cloud elements would add this dimension to the satellite
wind field analysis. A capebility to determine cloud height has been
demcnstrated by use of stereocgraphic photogrammetry on low altitude photo-~
graphs taken from Apollo 6 (ref. 5). This success suggests that cloud
heights snd therefore wind velocity may also be determined by using data
gathered from pairs of geosynchronous satellites located 10 to 20 degrees
apart in longitude. Calculastions indicate, however, that stereoscopic
determination of cloud heights from geosynchronous altitudes would be
marginal, at best, because of the small disparity angles involved

(ref. 6).

To aid in a test of the feasibility of performing stereoscopic de-
termination of cloud height at synchronous sltitudes, & series of earth-
centered photographs at 20-minute intervals, beginning soon after trans-
luner injection, were planned. The photographs required for this test
could only have been acquired from an Apollo lunar mission. A precise
record of time of photogrsephy was required to reconstruct the geometry
involved. Eleven photographs were tsken, and a precise time record was
obtained. The descripticn of the location of the spacecraft at the time
of each photograph is given in table 11.2-I, along with the time of pho-
tography, the enlargement required on each frame for normalization, and
the distance between photographic points. The experiment was successful,
and all photographs are of excellent quality. To support the analysis
of these photographs, aircraft reports, synoptic weather charts and sat-
ellite photographs for the time of photography have been acquired. Un-
fortunately, Advanced Technology Satellite I was out of operation on
the day of photography.
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TABLE 11.2-I.~ EARTH WEATHER PHOTOGRAPHY

Magazine L Missicn elapsed Gmt Altitude Normalization Distance
! time N . Latitude Longltude : enlargement apart
freme b hr:min:sec Esrth radii s
r:min:sec Mile required mile
{from center)
13-60-8590 07:17:1h 02:30:46 282380 130°00'w* 34 900 £.076 1.0000Q
1473.5
13-60-B591 07:39:47 02:52:49 28925'N 134°33'W 37 o5k 6.389 1.0617 .
L0g.2
13-60-8592 08:42:07 03:55:09 | 27°49'H% | 1k7°30'w® | b3 180 7.280 1.2372
1609.5
13-60-8593 09:03:11 0b:16:13 | 27°39'N 151°39'% Lk 998 7.545 1.2893
1982.8
13-60-859L 09:26:34 0h:29:36 27°24'N 156°35'W b7 098 7.850 1.3h95
1848,0
13-60-8595 09:47:10 | 05:00:12 a7°1h'n® | 161°00'w% | 18 920 8.116 1.4%017
H 22L0 .4
13-60-8596 10:08:39 05:21:41 27°0LTN 165°k9'y 49 B76 8.255 1.k291
22026
13-60-8597 10:30:59 05:4h:01 26°5h ' 170°50'W 51 655 8.513 1.k8c0
. 2275.5
132608598 10:52:59 06:06:01 | 26°45'8* | 175°51'W 53 401 8.767 1.5301
22968
13-60-8599 11:14:59 06:28:01 26°36'N 179°14*E 55 056 5.008 1.5775
2L36.6
13-60-8600 11:37:19 06:50:21 26°27'N 1TU09'E 56 728 9.251 1.6254

%positions are extrapolated.

The 11 photographs have been normelized so that the earth is the
same size in all frames. Frames 8590 and 8591 have been further enlarged.
By viewing these two frames under a stereoscope, pronounced apparent relief
is seen in the cloud patterns. The relief is so pronounced, in fact, that
it cannot be attributed sclely to height differences of clouds. It appears
to result, in part, from the relative horizontal motion in the cloud fields;
that is, clouds moving in the same direction as the spacecraft sppear far-
ther awgy than those moving in the direction opposite that of the space-
craft.

11.3 BSEISMIC DETECTICN OF THIRD STAGE LUNAR IMPACT

In prior lunar missions, the third stage has been separated from the
spacecraft with the intention of entering a solar orbit through a near-
miss, or "slingshot," approach to the moon. For Apollo 13, an opportunity
was available to gain further data on large-mass impact phenomena which
could be derived using the seismic equipment deployed during Apollo 12.
The impact of the lunar module ascent stage during Apollo 12 pointed up
certain unexplained seismological events which the S5-IVB impact was ex-
pected to reproduce.
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The S-IVB impacted the lunar surface at 8:09:41 p.m. e.s.t.,
April 1%, 1970, travelling at s speed of 5600 miles/hr. Stage weight
at the time of impact was 30 700 pounds. The collision occurred at a
latitude of 2.4 degrees south and a longitude of 27.9 degrees west, which
is approximately T4 miles west-northwest from the experiment station in-
stalled during Apolloc 12. The energy release from the impact was equiv-
alent to an explosion of 7.7 tons of trinitrotoluene (TNT).

Seismic signals were first recorded 28.4 seconds after impact and
continued for over 4 hours. Some 8ignals were so large that seismometer
sensitivity had to be reduced by command from earth to keep the data on
scale. Pesak signal intensity occurred 10 minutes after initial onset.
The peak value was 8 times larger than that recorded from the Apcllo 12
ascent stage impact, which ocecurred at s range of 40 miles from the seis~
mic station and was equivalent to 1 ton of TNT. An expanding gas cloud,
which presumably swept cut over the lunar surface from the S-IVB impact
point, was recorded by the lunar ionosphere detector deployed during
Apollo 12. Detection of this cloud began approximately 8 seconds before
the first selsmic signal and lasted TO seconds.

The character of the signal from the S-IVB impact is identicsal to
that of the ascent stage impact and those from natural events, presumed
to be meteoroid impacts, which are being recorded at the rate of about
cne per day. The S-IVB seismic energy is believed to have penetrated into
the moon to a depth of from 20 to 40 kilometers. The initial signal was
unusually clear and travelled to the seismic station at a velocity of
4.8 km/sec, which is near that predicted from lasboratory measurements
using Apollo 12 lunar rock samples. This result implies that, to depths
of at least 20 kilometers, the moon's ocuter shell may be formed from the
same crystalline rock material as found at the surface. No evidence of
a lower boundary to this material has been found in the seismic signal,
although it is clear the material is too dense to form the entire moon.

An unexplained characteristiec of the S-IVB impact is the rapid buildup
from its beginning to the peak value. This initial stage of the signal
cannot be explained solely by the scattering of seismic waves in a rubble-
type material, as was thought possible from the ascent stage impact data.
Several alternate hypotheses are under study, but no firm conclusions have
been reached. Signal scattering, however, may explain the character of
the later part of the signal. )

The fact that such precise targeting accuracy was possible for the
S-IVB impact, with the resulting seismic signals so large, have greatly
encouraged seismologists to study possible future S-IVB impacts. For
ranges extended to 500 kilometers, the data return could provide a means
for determining moon structures to depths approaching 200 kilometers.



12.0 ASSESSMENT OF MISSION OBJECTIVES

The four primary objectives (see ref. 7) assigned to the Apollo 13
mission were as follows:

a. Perform selenological inspection, survey, and sampling of ma-
terials in a preselected region of the Fra Msurc formation.

b. Deploy and activate an Apollo lunar surface experiments package.
¢. Further develop man's capability to work in the lunar environment.
d. Obtain photographs of candidate exploration sites.

Thirteen detailed objectives, listed in table 12-I and described in

reference 8, were derived from the four primary objectives. None of
these objectives were accomplished becsuse the mission was aborted. In

TABLE 12-I.- DETAILED OBJECTIVES AND EXPERIMENTS

Description Completed

B Television coverage No

C Contingency sample collection No

D Selected sample collection No

E Evaluation of landing accuracy techniques No

F Photographs of candidate exploration sites No

G Extravehicular communication performance No

H Lunar soil mechniecs No

I Dim 1light photography No

J " Selenodetic reference point update No

K C8M orbital science photography No

L Transearth lunar photography No

M EMU water consumption measurement No

N Thermal coating degradation No
ALSEP TIIT Apollo lunar surface experiments package No
5-059 Lunar field geoloegy : No
S-080 Solar wind composition No
S-164 S-band transponder exercise No
5-170 Downlink bistatic radar observations of the Moon No
8-178 Gegenschein from lunar orbit No
S-184 Lunar surface close-up photography No
T-02G Pilot describing function Yes
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addition to the spacecraft and lunar surface objectives, the following
two launch vehicle secondary objectives were assigned:

&. Attempt to impact the expended S-IVB stage on the lunar surface
within 350 km of the targeted impact point of 3 degrees south latitude
and 30 degrees west longitude under nominal flight control conditions to
excite the Apollo 12 seismometer.

b. Postflight determination of the actual time and location of S-IVB
impact to within 1 second.

Both objectives were accomplished, and the results are documented in
reference 2. The impact was successfully detected by the seismometer and
is reported in greater detail in section 11.3.

Seven scientific experiments, in addition to those contained in the
lunar surface experiment package, were also assigned as follows:

a. Lunar field geology (S-059)

b. Pilot describing function (T-029)

c. Solar wind composition (S-080)

d. S-band transponder exercise (S-164)

Downlink bistatic radar observations of the moon (S-170)

f. Gegenschein observaetion from lunar orbit ($-178)

g. Lunar surface closeup photography (S-184)

The pilot describing function experimenﬁ (T-029) was a success, in
that data were obtained during manually controlled spacecraft maneuvers

which are available to the principle investigator. None of the other
experiments was attempted.
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13.0 LAUNCH VEHICLE SUMMARY

The Apollo 13 space vehicle was launched from pad A of complex 39,
Kennedy Space Center, Florida. Except for the high-amplitude, low-
frequency oscillations which resulted in premature cutoff of the S-II
center engine, the basic performance of the launch vehicle was normal.
Despite the anomaly, all launch vehicle objectives were achieved, as dis-
cussed in reference 2. In addition, the S-IVB lunar impact experiment
was accomplished, as discussed in section 11.3.

The vehicle was launched on an azimuth 90 degrees east of north,

and a roll maneuver at 12.6 seconds placed the vehicle on a flight azi-
muth of 72.043 degrees east of north. Trajectory parameters were close

to nominal during S-IC and S-II boost until early shutdown of the center
engine. The premature cutoff caused considerable deviations from certain
nominal launch-vehicle trajectory parameters which were particularly evi-
dent at S-II outboard engine cutoff. Despite these deviations, the guid-
ance system is designed to operate such that an efficient boost is con-
ducted under engine-out conditions, and near-nominal trajectory parameters
were achieved at orbital insertion and at translunar injection. Because
of the reduced effective thrust, however, these respective events occurred
44,07 and 13.56 seconds later than predicted. After spacecraft ejection,
various S-IVB attitude and propulsive maneuvers placed the vehicle on a
lunar impact trajectory very close to the desired target (section 11.3).

Structural loads experienced during S-IC boost were well below design
values, with maximum lateral loads approximately 25 percent of the design
value. As a result of high amplitude longitudinal oscillations during
5-1I1 boost, the center engine experienced a 132-second premature cutoff.
At 330.6 seconds, the S-II crossbeam oscillations reached a peak amplitude
of +33.7g. Corresponding center-engine chamber pressure oscillations of
+225 psi initiated engine cutoff through the "thrust OK" switches. These
responses were the highest measured amplitude for any S-I1 flight. Except
for the unexpected high amplitude, oscillations in this range are an in-
herent characteristic of the present S-II structure/propulsion configura-
tion and have been experienced on previous flights. Acceleration levels
experienced at variocus vehicle stations during the period of peak oscil-
lations indicate that the vehicle did not transmit the large magnitude
oscillations to the spacecraft. Installation of an accumulator in the
center-engine liquid oxygen line is being incorporated on future vehicles
to decouple the line from the crossbeam, and therefore suppress any vibra-
tion amplitudes. Addition of a vibration detection system which would
monitor structural response in the 1lb-to-20 Hz range and initiate engine
cutoff if vibrations spproach a dangerous level is alsc under investiga-
tion as a backup.
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The pilot describing function experimeﬁt (T~029) was & success, in
that data were obtained during manually controlled spacecraft maneuvers
which are available to the principle investigator. None of the other

experiments was attempted.
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14.0 ANOMALY SUMMARY

This section contalns a discussion of the significant problems or
discrepancies noted during the Apollo 13 mission.

14.1 COMMAND AND SERVICE MODULES

1L.1.1 Loss of Cryogenic Oxygen Tank 2 Pressure

At approximately 55 hours 55 minutes into the Apollo 13 mission,
the crew heard and felt the vibrations from a sharp "bang," coincident
with a computer restert and a master alarm associated with a main-bus-B
undervoltage condition. Within 20 seconds, the crew made an immediate
verification of electrical-system parameters, which appeared normal.
However, the crew reported the following barberpcole indications from the
service module reaction control system:

a. Helium 1 on guads B and D
b. Helium 2 on quad D

c. BSecondary propellant valves on quads A and C.

Approximately 2-1/2 minutes after the noise, fuel cells 1 and 3
ceased generating electrical power.

The first indication of a problem in cryogenic oxygen tank 2 occurred
when the quantity gage went to a full-scale reading at L46 hours 40 minutes.
For the next 9 hours, system operetion was normal. The next abnormal in-
dication occurred when the fans in cryocgenic oxygen tank 2 were turned on
at 55:53:20. Approximately 2 seconds after energizing the fan circuit, a
short was indiceted by the current trece from fuel cell 3, which was sup-
plying power to the oxygen tank 2 fans. Within several additional seconds,
two other shorted conditions occurred.

Electrical shorts in the fan circuit ignited the wire insulation,
causing pressure and temperature increases within oxygen tank 2., During
the pressure rise period, the fuses opened in both fan circuits in cryo-
genic oxygen tank 2. A short-circuit conduction in the quantity gaging
systen cleared itself and then began an open-—circuit condition. When
the pressure reached the tank-2 reliefwvalve full-flow conditions of
1008 psia, the pressure decreased for about § seconds, after which time
the relief valve probably reseated, causing another momentary pressure
increase. Approximately 1/4 second after this momentary pressure in-
crease, a vibration disturbance was noted on the command module acceler-
ometers.
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The next series of events occurred within a fraction of a second
between the accelerometer disturbances and a momentary loss of data.
Burning of the wire insulstion reached the electrical conduit leading
from inside the tube to the external plug ceusing the tank line to burst
because of overheating. The ruptured electrical conduit caused the vacuum
Jacket to over pressurize and, in turn, ceused the blow—out plug in the
vacuumn jacket to rupture. Scme mechanism, possibly the burning of in-
sulation in bay 4 combined with the oxygen buildup in that bay, caused
& rapld pressure rise which resulted in separstion of the outer panel.
Ground tests, however, have not substantiated the burning of the Mylar
insulation under the conditions which probably existed just after the
tank rupture. The panel separation shock closed the fuel cell 1 and 3
oxygen reactant shut-off valves and several propellant and helium isola-
tion valves in the reaction control system. Data were lost for about
1.8 seconds as the high-gain antenna switched from narrow beam to wide
beam, because the panel, when separsting, struck and damaged one of the
antennsa dishes.

Following recovery of the data, the vehicle had experienced & trans-
lation change of sbout 0.4 ft/sec, primerily in a plane normal to bey k4.
The oxygen tank 2 pressure indication was at the lower limit of the read-
out. The oxygen tank 1 hesters were on, and the tank 1 pressure was de-
caying rapidly. A main-bus-B undervoltage alerm and a computer restart
also cccurred at this time,

Fuel cells 1 and 3 operated for sbout 2-1/2 minutes after the re-
actant valves closed. During this period, these fuel cells consumed the
oxygen trapped in the plumbing, thereby reducing the pressure below mini-
mun requirements and causing total loss of fuel cell current and voltage
output from these two fuel cells. Because of the loss of performence by
two of the three fuel cells and the subsequent load switching by the crew,
numercus associated master alarms occurred as expected.

Temperature changes were noted in bays 3 and 4 of the service module
in response to a high heat pulse or high pressure surge. Fuel cell 2 was
turned off about 2 hours later because of the loss of pressure from cryo-
genic oxygen tank 1.

The cryogenic oxygen tank design will be chenged to eliminate the
mechenisms which could initiate burning within the tank and ultimately
lead to a structural failure of the tank or its components. All electri-
cal wires will be stainless-steel sheathed and the quantity probe will be
mede from stainless steel instead of aluminum. The fill-line plumbing
internal to the tenk will be improved, and a means of warning the crew of
an inadvertent closure of either the fuel cell hydrogen or oxygen valves
will be provided. A third cryogenic oxygen tank will be added to the
service module for subsequent Apollo missions. The fuel cell oxygen
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supply valve will be redesigned to isolate polytetrafluorcethylene-
coated wires from the oxygen. Warning systems at the Mission Control
Center will be modified to provide more immediate and visible warnings
of anomslies in all systems.

A more thorough discussion of this anomaly is presented in refer-
ence 1.

This anomaly is closed.

14.1.2 Postlanding Vent Valve Malfunction

During postlanding activities, recovery personnel discovered that
the postlanding ventilation inlet valve was closed and the exhaust wvalve
was open.

The ventilation velve is opened by first pulling the postlanding vent
valve unlock handle. The handle is attached by a cable to two pins which
mechanically lock the ventilation valves closed. Once the handle is pull-
ed, the postlanding vent fan switch is placed to either the high or low
position. This operation opens both ventilation valves and sctustes the
postlanding blower. The recovery forces found the switch setting to be
proper, but the vent velve unlock handle was partially out instead of
completely out.

The inlet valve locking pin was not in the full open position
(fig. 14-1), a condition which would keep the valve in the closed posi-
tion even though both the pin and slot were measured to be within design
tolerances.

A check of the operation of the valves with different pull positions
of the handle from locked to full open requires sbout one inch of travel
and was made with the following results:

8. With the handle extended only 1/4 inch or less from the valve
locked position, both plungers remained locked.

b. With the handle extended from 5/16 to 3/8 inch from the valve—
locked position, the exhaust valve opened but the inlet valve remained
closed. This condition duplicates that of the position of the handle and
the operation of the valve found on the Apcllo 13 spacecraft after flight.

c. When the handle was extended from 3/8 inch to full travel from
the valve-locked position, both the inlet and and exhasust valves opened.

Testing verified that application of power to the valves while the
locking pins are being released will prevent the pin from being pulled
to the unlock position because the drive shaft torque binds the lock pin.
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Figure 1k-1.- Post-landing vent valve lock.

The valve-lock mechanism rigging tolerances were found to be within speci-
fications. When reassembled in the spacecraft, the malfunction was dupli-
cated with only partial travel of the handle.

The ventilation system was designed with two flexible control-cable
assemblies linked to one handle, which is pulled to operate the two valves.
An inherent characteristic of this design is that one control cable will
nearly always slightly lag the other when the handle is pulled. At full
extension of the handle, the travel in each cable assembly is more than
sufficient to disengage both plungers and allow both valves to operate.
Checkout procedures prior to flight were found to be satisfactory. There
was no evidence of mechanical failure or malfunction nor were any out-
of-tolerance components found.
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To guard against cperational problems of this type in the future, a
caution note has been added in the Apclle Operations Handbook to actuate
the ventilation valve handle over its full travel bhefore switching on the
postlanding vent fan.

This anomaly is closed.

14.1.3 Shaft Fluctuations in the Zero Optics Mode

Beginning at approximately 40 hours, fluctuations of as much as
0.3 degree were observed in the computer readout of the opties shaft
angle. The system had been powered up throughout the flight and had
been in the zero optics mode since the star/horizon navigation sightings
at 31 hours. Crew observation of the manual readout subsequently con-
firmed that the fluctuation was actually caused by motion of the shaft.
The circumstances and time of occurrence were almost identical to a sim-
ilar situation which occurred during the Apollo 12 mission.

A simplified schematic of the optics shaft servo loop mechanization
is shown in figure 14-2. In the zero opties mode, the sine outputs of

NASA-5-70-5842
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Figure 14-2.- Zero optics mode circuitry.
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the half-speed and lé-speed resolvers are routed through a coarse/fine
switching network to the motor drive amplifier and are used to null the
system. Rate feedback from the motor tachometer is routed to the drive
amplifier through a compensation network which removes any bias in the
signal. When the zero optics mode is selected, the coupling-data-unit
counter and the computer register which contains the shaft angle are
zeroed for 15 seconds and then released to follow the 16-speed resolver.
The half-speed resolver, the fine/coarse switehing network, and the tach-
ometer feedback compensation are used only in the zero optics mode,

An investigation conducted after Apollo 12 did not identify & defi-
nite source of the problem, since extreme corrosion from sea water after
landing prevented meaningful examination of the mechanical drive system
and restricted testing to the power and servo assembly which contains the
major electronic components. No abnormal indications were found in the
Apollo 12 system; however, the failure symptoms were reproduced on a
breadboard by breaking down the isclation across a transformer in the
tachometer feedback compensation network. Although depotting and testing
of the actual transformer failed to produce any evidence of malfunction,
this mechanism was considered a likely candidate for a random failure.

The recurrence of the problem under almost identical circumstances
during Apollo 13 indicates that the cause igs more likely generic than
random and that it is time or vacuum dependent. The susceptibility of
the shaft axis rather than the trunnion axis also tends to absolve com-
ponents common to both axes, such as the electronics and the motor drive
amplifier. The shaft loop has been shown to be more sensitive than the
trunnion to harmonics of the 800-hertz reference voltages introduced into
the forward loop; however, because the level of the required null offset
voltage is well above that available by induction, this mechanism is con-
sidered unlikely.

The most likely candidate is the half-speed resolver, which is used
only for the shaft axis and only to provide an unambiguous zero reference.
The reference voltage is applied to the rotor through slip rings
(fig. 1k-3), connected as shown in figure 1b-L. If any resistance is
present in the common ground path through the slip ring, a portion of the
reference voltage will appear across the quadrature winding and induce a
finite output (different than zero). Zero output is equivalent to zero
degrees in shaft rotation.

Simulated changes in slip ring impedance were made on the half-speed
resolver in the shaft loop (fig. 14-L). An impedance of 50 ohms produced
an offset of approximately plus 0.5 degree in sextant shaft angle. The
trunnion loop does not use this type of resolver or connection.

Some evidence of susceptibility to vacuum was exhibited in this
class of resolvers during qualification testing when variations of approx-
imately 5 ohms were observed in the slip ring resistance during thermal
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Figure 1hk-h.- One-half speed resolver.

vacuum testing. The tests were run with the umits rotating at 1 rpm,
however, and the momentary resistance changes disappeared with the wiping
action.

The testing of the half-speed resolver with resistance in the low
side of the sine winding and the vacuum susceptibility exhibited during
qualification testing closely duplicate the characteristics of inflight
"zero optics" operation. The slip-ring mechanism is unique to the shaft-~
axis, since none of the other resolvers in the system use slip rings.

This resolver is in the optics head, which is vented to a vacuum. The
rotation of the optics head in a normal operation would wipe the slip
rings clean and explain the delay in the fluctuations for socme hours after
selecting zero optics.
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Corrective action to high resistance on the brush/slip rings of the
resolver is not required since accurate zeroing is unaffected and there
is no effect in the operation of the system other than system readout
when not in use. This condition can be expeeted to recur in future Apolloe
flight. Future crews will be briefed on this situstion.

This anomaly is closed.

14.1.4 High-Gain Antenna Acquisition Problem

Prior to the television transmission at approximately 55 hours,
difficulty was experienced in obtaining high-gain antenna acquisition
and tracking. The Command Module Pilot had manually adjusted the antenna
settings to plus 23 degrees in pitch and 267 degrees in yaw, as requested
by the ground 7 hours earlier. The most favorable settings for 55 hours
were actually plus 5 degrees in pitch and 237 degrees in yaw. The dif-
ference between these two sets of angles pointed the antenna boresight
axis approximately 35 degrees away from the line of sight to the ground
station.

Wnen the transmission was switched from the omnidirectional antenna
to the manual mode of the high-gain antenna, there was a 6 dB decrease in
uplink signal strength and a 17 dB decrease in downlink signal strength.
With the high-gain antenna in the wide beam mode and nearly boresighted,
the uplink and downlink signal strengths should have been at least equal
to the signal strength obtained with an omnidirectional antenna. A com-
parison of the wide-, medium-, and narrow-beam transmit and receive pat--
terns indicates the high-gain antenna mode was in a medium-beam, manual
mode at the time of acquisition and remained in this configuration until
the reacquisition mode was selected at 55:00:10.

Starting at 55:00:10 and continuing to 55:00:40, deep repetitive
transients approximately every 5 seconds were noted on the phase modula-
ted downlink carrier (fig. 14-~5). This type of signature can be caused
by a malfunction which would shift the scan-1limit and scan-limit-warning
function lines, as illustrated in figure 14-5. These function lines
would have to shift such that they are both positioned between the antenna
manual settings and the true line of sight to earth. Also, the antenna
would have to be operating in the auto-reacquisition mode to provide these
signatures. The antenna functions which caused the cyclic inflight RF
signatures resulting from a shift in the function lines can be explained
with the aid of figures 14-5 and 14-6, with the letters 4, B, C, and D
corresponding to events during the cycle. BStarting at approximately
55:00:10, the antenna was switched from manual to auto reacquisition with
the beamwidth switch in the medium-beam pesition. From point A to the
scan limit function line Just prior to point B, the antenna acquired the
earth in wide beam. When the antenna reached the secan limit function
line, the antenna control logic would switch the system to the manual
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Figure 14-5.- Shift in scan-limit, scan-limit-warning illustrated.

mode and drive back toward the manual settings until the scan limit warn-
ing function line at point C was reached, thereby maintaining wide-beam
operation. When the antenna reaches the scan limit warning function line,
the system would automatically switch to the medium-beam mode and con-
tinue to drive in the manual mode until the manual setting error was
nulled out at point A. The antenna would then switch to the auto~track
mode and repeat the cycle. The most important feature of this cycle is
that the antenna moves at the manual scan rate between points B and D,
which is confirmed by the rapid changes in the downlink signal strength.

System testing with a similar antenna and electronics box showed RF
signatures comparable to those observed in flight. This consistercy was
accomplished by placing the target inside the scan limits and the manual
setting outside the scan limits. These two positions were separated ap-
proximately 35 degrees, which matched the actual angular separation ex-
perienced. Under these conditions, the antenna cycled between the target
and the manual setting while operating in the auto-reacquisition mode and
produced the cyclic RF signature. Since the inflight loss of signal to
earth was not near the scan limit, the failure mechanism would be a shift
in the scan-limit functicn line.

Elements in the scan-limit and scan-limit-warning circuit were
shorted and opened to determine the effect on the scan~limit shift. The
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results of this test shifted the scan-limit functions but did not produce
the necessary change in the scan-limit slope. Consequently, a failure in
the electronic box is ruled out.

The only compenent identified with a fallure mode that would produce
a shift in the scan-limit functions and a shift change is the C-axis in~
duction potentiometer located in the antenna. This potentiometer is used
to provide a voltage proportional to the C-axis angular orientation and
consists of three separate coils, each with symmetrical winding on oppo-
site sides of the rotor or stator. These coils include the primary wind-
ing on the stator, the compensation or bias winding on the stator, and
the linear output winding located on the rotor. The bias winding is used
to shift the normal *70 degrees linear output to a new linear output over
the range of from minus 10 to plus 130 degrees.

The voltages for the C-axis induction potentiometer and the A-axis
function generator, alsc located in the antenna, add together in the
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electronic box and trigger the antenns logic to produce the scan<limit
functions when the voltage sum reaches & threshold value. Under normal
operating conditions, the threshold voltsge is reached when the Ceaxis
angular travel is between 95 and 115 degrees.

The failure mode of the C-axis induction potentiometer is s short
in the stator excitation winding. Shorting one half of the stator's
primary winding to ground would produce a greater slope in the curve
showing the induction potentiometer transformation ratio versus angular
travel. This slope increase would produce nonlinear effects because the
magnetic flux is concentrated in one-half of the primary winding. Fur-
ther analysis is in progress to establish the particular failure and what
might have caused the condition.

A test will be performed at the launch site on future spacecraft to
preclude launching with either a bad C-axis or A-axis generator,

An anomaly report will be published when the ahalysis is complete.

This anocmaly 1s open.

14.1.5 Entry Monitor System 0.05g Light Malfunction

The entry monitor system 0.05g light did not illuminate within 3
seconds after an 0.05g condition was sensed by the guidance system. The
crew started the system manually as prescribed by switching to the back-
up position.

The entry monitor system is designed to start avtomatically when
0.05g is sensed by the system accelerometer. When this sensing occurs,
the 0.05g light should come on, the scroll should begin to drive, and the
lrange-to-go counter should begin to count down. The crew reported the
light failure but were unable to verify whether or not the scroll or
counter responded before the switch was manually changed to the backup
mode.

The failure had to be in the light, in the 0.05g sensing mechanism,
or in the mode switch, mode switching could also have been premature.

An enlarged photograph of the scroll was examined in detail to de-
termine if the scroll started properly. While no abnormal indications
were observed, the interpretation of these data is not conclusive.

A complete functional test was performed and the flight problem
could not be duplicated. The system was cold socaked for 7 hours at
30° F. While the system was slowly warming up, continucus functional
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tests were being performed to determine if thermal gradients could have
caused the problem. The system operated normally throughout all tests.

Following verification of the light and sensing circuit, the mode
switch was examined in detail. Tests were performed to determine con-
tact resistance, and the switch was examined by X-ray for conductive
contaminants and by dissection for nonconductive contaminants. No evi-
dence of any switch problems was indicated.

The extensive testing and analyses and the consistency with which
the postflight test data repeated preflight acceptance test results in-
dicate the problem was most likely caused either by the Command Module
Pilot responding too quickly to the 0.05g light not coming on or by an
intermittent hardware failure that cleared itself during entry.

Based on these findings, a change is not warranted to existing pro-
cedures or hardware on future flights.

This anomaly is closed.

14.1.6 Gas Leak in Apex Cover Jettison System

During postflight inspection, it was discovered that propellant gas
nad leaked from the gusset-U4 breech assembly, which is a part of the apex
cover jettison system (fig. 14-7). A hole was burned through the alum-
inum gusset cover plate (fig. 14-8), and the fiberglass pilot parachute
mortar cover on the parachute side of the gusset was charred but not
penetrated. The leakage ocecurred at the breech-plenum interface
(fig. 14-9). The breech and plenum are bolted male and female parts
which are sealed with a large O-ring backed up with a Teflon ring, as
shown in figure 14-7. During operation, the breech pressure reaches
approximately 14 000 psi and the gas temperature exceeds 2000° F. The
O-ring and backup ring were burned through and the metal parts were
ercded by the hot gas at the leak path. The system is completely re-
dundant in that either thruster system will effect apex cover jettison.
No evidence of gas leakage existed on the previous firings of 56 units.

The possible causes of the gas leskage include:

a. QOut of tolerance parts - Measurement of the failed parts indi-
cate acceptable dimensions of the metal parts.

b. Damaged O-rings - The 21 000-psi static proof-pressure test was
successful.

c. Gap in backup ring - The installation procedure specifies the
backup ring may be trimmed on assembly to meet installation requirements,
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Figure 1h-T.- Apex cover jettison system.

but does not specify any dimensional control over the scarf joint.

Since the gap portion was burned away, a gap in the backup ring could
have caused the problem.

Material and dimensional controls and improvement of assembly pro-
cedures will minimize the possibility of gas leakage without necessitat-
ing a design change. However, to protect against the possibility of
leaking gas with the existing design, a thermal barrier of polyimide
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Figure 1L-8.- Damage from apex Jettison thruster.
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Figure 1L-9.- Plenum side of breech-plenum interface.
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sheet (fig. 14-10) will be applied to the interior of the breech plenum
area on future spacecraft. The protection provided by the polyimide has
been proof-tested by firing the assembly without the O-ring, simulating
a worst-case condition. '

This anomaly 1s closed.
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Figure 14-10.- Tunnel gusset protection.

1L4.1.7 Reaction Control Isolation Valve Fallure

During postflight decontamination of the command medule reaction
control system, the system 1 fuel isolation valve was found open when
it should have been closed. All other propellant isclation valves were
in the closed position. The subsequent failure investigation revealed
that the lead from the fuel valve closing coll was wired to an unused
pin on a terminal board instead of to the proper pin. X-rays of the
terminal board and closeout photographs indicate the miswiring occurred
during initial installation.

The miswired valve (fig. 14-11) passed the functional checks during
buildup and checkout because, even with the closing coil lead completely
disconnected, the valve can be closed through an inductive coupling with
the oxidizer-valve closing coil. That is, a reverse-polarity voltage can
be generated in the oxidizer valve opening coil through a "transformer"
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Figure 1hk-11.- Isolation valve circuit.

action. This voltage is applied to the fuel valve opening coil where it
induces a magnetic field flux that closes the fuel valve. With 28 volts
or more on the spacecraft bus, this phencmenon was consistently repeat-
able. With 24 to 28 volts on the bus, the valve would occasionally close,
and with less than 2L volts, the valve would not close. Since preflight
testing is accomplished at 28 volts, the functional tests did not dis-
close the miswiring. During the mission, the voltage was such that the
valve did not close when commanded and therefore was found open after the
flight.

Certain components are wired into the spacecraft wiring harness by
inserting crimped, pinned ends of the wiring into terminal beoards of the
spacecraft harness. In many cases, this wiring is part of closeout in-
stallations and circuit verification can only be accomplished through
functional checks of the component. This anomaly has pointed out the
fact that circuits verified in this manner must be analyzed to determine
if functiocnal checks provide an adequate verification. All circuits
have been analyzed with the result that the service module and command
module reaction control system propellant isolation valves are the only
components which require additional testing. Resistance checks will be
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performed on all future spacecraft to prove that the isolation valves
are properly wired.

This anomaly is closed.

14.1.8 Potable Water Quantity Fluctuations

The potable water quantity measurement fluctuated briefly on two
occasions during the mission. At asbout 23 hours, the reading decreased
from 98 to T9 percent for about 5 minutes and then returned to a normal
reading of approximately 102 percent. Another fluctuation was noted at
about 3T hours, at which time the reading decreased from its upper limit
to 83.5 percent. The reading then returned to the upper limit in a period
of 7 seconds,

Preflight fluctuations of from 2 to 6 Percent near the full level
were observed once during the countdown demonstration test, and a pos-
sible earlier fluctuation of about L percent at the half-full level was
noted during the flight readiness test.

This transducer has operated erratically on two previous missions.
Testing after Apollo 8 traced the failure during that mission to moisture
contamination within the transducer. Similar fluctuations noted during
Apollo 12 were traced to a minute quantity of undetermined contamination
on the surface of the resistance wafer. Characteristically, the signal
level decreased first to indicate an increase in the resistance but re-
turned to more normal readings as the wafer cleaned itself. Disassembly
of the Apollo 13 transducer and water tank did not produce evidence of
either contamination or corrosion. The spacecraft wiring which could
have produced the problem was checked and no intermittents were found.

The measurement is not essential for flight safety or mission suc-
cess. The potable water tank is continually refilled with fuel cell pro-
duct water, and when the potable water tank is full, fuel cell preduct
water ig automatically diverted to the waste water tank, which is period-
ically dumped overboard. Water from the potable water tank is used mainly
for drinking and food reconstitution. Since fuel cell water generation
rates can be computed from power generation levels and since potable
water usage rates can be estimated with reasonsble accuracy , the quantity
of water in the potable water tank can be determined with acceptable
accuracy without the quantity measurement.

This anomaly is closed.
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14.1.9 Suit Pressure Transducer Failure

During launch the sult pressure transducer reading remained consist-
ent with cabin pressure until 00:02:45, then suddenly dropped from 6.7
to 5.7 psia coincidentally with S-II engine ignition (fig. 14-12). The
difference between the two measurements decressed to onily 0.2 by 1-1/2
hours, when the cabin reached its nominal regulated pressure of 5.0 psia.
For this shirtsleeve mode, the suit and cabin pressure readings should
be nearly equal. During nermal variations in the command module cabin
pressure, the suit pressure measurement responded sluggishly and indicated
as much as 1 psi low. Subsequently, the measurement outvut decayed and
remained in the 4.1 to 4.3 psia range for a cabin pressure of 5.0 psia
until system deactivation at about 59 hours (fig. 14-12).
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Figure 14-12.- Suit and cabin pressure.
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Figure 14-12.- Continued.

During periods when the lunar module and the command module cabins
were interconnected, the lunar module and command module cabin pressure

readings were approximately equal, verifying the operation of the command
module cabin pressure transducers.
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The suit measurement indicated correctly during the brief instru-
mentation power-up pericds at 102 and 123 hours. However, Jjust prior to
entry, the suit indication was approximately C.3 psi lower than cabin
pressure but increased to 7.7 psia when the cabin pressure was reading
13.9 psia Just prior to landing.

This transducer also behaved erratically on Apollo 12. Postflight
analysis of both the Apollo 12 and Apollo 13 transducers determined the
cause to be internal contamination from electroless nickel plating
particles.

The transducer is a variable reluctance instrument actuated by
differential pressure applied across a twisted Bourdon tube. The housing,
including the cavity containing the Bourdon tube and the variable reluc-
tance elements, is nickel plated. The Bourdon tube-variable reluctance
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assembly and the sense port fitting are soldered in place. Inspection
of the falled units indicates that the flsking occurs adjacent to the
solder. :

The most probable cause of the problem is poor plating adhesion to
the aluminum base metal. Differential expansion between the solder and
the aluminum may cause the plating to crack. Moisture from the environ-
mental control system suit loop could then penetrate the plating, corrode
the aluminum base metal and cause the plating to peel and flake. The
nickel flakes could then enter the air gap of the variable reluctance
elements and affect the measurement.

Inspection also revealed that both the cabin and suit loop pressure
transducers contained various contaminants identified as soclder flux,
glass beads (0.04 mm diameter), and fibers from the wipers used in the
transducer manufacturer's clean room; all of which could potentially
affect the transducer operation.

To assure that one of the pressure transducers is operative, the
Apollo 1k cabin pressure transducer will be disassembled, the plating
will be inspected and the instrument will be cleaned, reassembled and
installed.

For Apollo 15 and subsequent, the suit and cabin pressure transducers
will be disassembled and cleaned. The plating will be inspected for
cracking or fleking and the units will be reassembled. The suit pressure
transducers will be reassembled without soldering.

This anomaly is closed.

14.1.10 Gas Leak in Electrical Circuit Interrupter

During postflight inspection of the command module, propellant gas
was noted to have escaped from the left-hand electrical circuit inter-
rupter, mounted in the lower equipment bay, and deposited soot on adja-
cent equipment. The right-hand circuit interrupter showed no evidence
of a gas leakage. The removed breech, showing the displaced O-ring and
crushed attenuator block, is shown in figure 1h-13.

The two interrupters open the electrical circuits about 30 milli-
seconds before the wires are severed by the command module/service module
umbilical guillotine., As illustrated in the figure, a cam fork is moved
by a piston, which is operated by propellant gas from redundant cartridges,
to function a 1ift plate. Motion of this plate disconnects the male and
female portions of electrical connectors located, respectively, in the
l1ift plate and in the base plate of the interrupter. At the completion
of the stroke, the fork is brought to rest by impacting and crushing an
aluminum block mounted on the interrupter housing.
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The worse-case tolerance buildup is when the fork contacts the
attenuator block and the piston O-ring is 0.075 inch from entering the
chamfer in the breech assembly. The O-ring enters this chamfer when
the block has been ecrushed about 94 percent, at which point an O-ring
displacement and accompanying gas escape could be expected. The factors
which affect the degree of attenuator crushing are generally uncontrol-
lable within narrow limits and include:

a. Sliding friction of the many electrical contact pins, the
several camming and fork-to-plate surfaces, and the piston

b. Forces exerted by the springs, which hold the 1ift and base
plates together in the assembled position

c. Propellant gas pressure and the simultaneous increase of pres-
sure in the two breeches and the plenum

d. Simultaneous occurrence of the electrical firing signals to
the two cartridges

e, Physical properties of the attenuatcer block.

Based upon an analysis of the interrupter design, its location,
and its relationship to adjacent equipment, it is concluded that gas
will not escape prior to the completion of the deadfacing function and
that, should such escape occur, the gas will not adversely affect any
other components. Therefore, no hardware modification is necessary.

This anomaly is closed.
14.2 LUNAR MODULE

14.2.1 Abnormal Supercritical Helium Pressure Rise

During the initial cold-soak period following loading of supercrit-
ical helium during the Apollo 13 countdown demonstration test, the helium
exhibited a pressure rise rate approximately three times greater than ex-
pected. A preflight test was devised to determine the pressure-rise rate
that would exist at the time of descent engine firing for lunar descent.
The predicted tank conditions at that time would be approximately 900 psisa
pressure and 48 pounds of helium. Normal procedures were not used to
reach 900 psia because 100 hours would have been required and the launch
schedule would have been impacted; therefore, the pressure was raised to
800 psia by flowing warm helium through the tank heat exchanger. The sub-
sequent pressure rise rate was abnormally high st 14.9 psi/hour. The ab-
normality of this rate was confirmed by repeating the test on twoc other
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helium tanks, one at the manufacturer's plant and the other at the Manned
Spacecraft Center. The results indicated pressure rise rates of 8.8 and
8.7 psi/hour, respectively.

The heat-leak test during the countdown demonstration indicated a
normal rise rate of 7.9 psi/hour at 640 psia, whereas the special test
showed an abnormal rise rate of 14.9 psi/hour above 900 psia. At some
helium temperature equivalent to a pressure between 640 and 900 psia, the
rise-rate characteristics would increase in the manner exhibited during
the countdown demonstration test. Extrapolating these results to the
flight conditions, it was determined that the helium tank was fully cap-
able of supporting a lunar landing timeline, and the decision was made to
proceed with the flight using the existing tank.

The prelaunch-standby rise rate was a normal 7.8 psi/hour. During
flight, the zero-g rise rate of T psi/hour was slightly higher than ex-
pected, but still satisfactory. Following the first descent engine fir-
ing at 61-1/2 hours, the rise rate increased to 10.5 psi/hour, rather
than returning to its normal value, as shown in figure 14k-14. After the
second firing at 79-1/2 hours, the rise rate again increased, this time
to approximately 33 psi/hour until about 109 hours, when the helium-tank
burst disc ruptured at 1937 psia, as it should have and vented the remain-
ing helium overboard.

The helium tank is a double-walled titanium pressure vessel, with
173 layers of aluminized Mylar insulation between the two shells. The
annular region is evacuated to a level of 10 / torr during the manufac-
turing process.

The most likely cause of the anomaly is a tank-insulation degrada-
tion which would result in increased heat conduction to the helium. The
insulating characteristics of the annular vacuum in tank was most likely
degraded by the introduction of a contaminant (probably hydrogen) in ex-
tremely small concentrations {approximately 10 © pounds). These contam-
inants when vaporized can exponentially increase the thermal conductivity
in proportion to their vapor pressure, as indicated by special tests.
While loading helium into the tank, the contaminants would freeze upon
the inner shell. In the frozen state, the pressure of the contaminant is
too low to significantly affect the thermal conductivity. However, the
flow check which preceded the cold-scak operation would vaporize the con-
taminants in the vicinity of the heat exchanger lines which pass through
the annulus. The subsequent increase in thermal conductivity could cause
the gbnormally high pressure-rise rate cobserved during the cold soak.
These vapors would slowly condense on the cold (10° R) inner wall, re-
sulting in the pressure rise rate droping to the nominal level, as was
observed. The rise rate would remain normal until the helium temperature
increased above the vaporization temperature of the contaminant.
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A screening test was devised for all future flight tanks to supple-

ment normal helium tank testing. The purpose of this test is to deter-
mine the pressure rise rate for a wide range of helium temperatures from
approximately 9° to 123° R. For a perfect tank, the steady-state rise
rate should remain at approximately 8 psi/hour over the entire range of
temperatures. The Apollo 14, 15, and 16 tanks have been subjected to the

screening test, and each exhibit the same phencmena cbserved during

Apollo 13, but to a lesser degree. For new tanks, the manufacturer will
periodically analyze the gases removed from the vacuum jacket during pump
down for possible contaminants. The pressure in the jacket will be mea~-

sured 2 or 3 weeks after pumpdown to verify vacuum integrity.

This anomaly is closed.
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14.2.2 Abnormal Descent Stage Noise

At 97 hours 1k minutes, the crew reported & thumping ncise and snow-
flakes venting from quadrant 4 of the lunar module descent stage (fig. 1h-15).
A1l four descent batteries experienced current transients at 97:13:53 for
about 2 seconds, with corresponding drops in de bus voltage (fig. 1h4-16).
Also, the water glycol pressure differential for the heat transport sys-
tem decreased momentarily, indicating that the glycol pump momentarily
slowed down.
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The thumping ncise occurred at about the same time as the current
spikes. The current spikes show that a momentary short circuit existed
in the Lunar-Module-Pilot side of the dec electrical system, which includes
descent batteries 1 and 2 (fig. 14-16). The current surge was not of
sufficient duration either to open the balance-load cross-tie circuit
breakers, to display a reverse current indication, or to trip a battery-
off relay as a result of an overcurrent condition.

The data show that descent battery 2 experienced at least a 60-ampere
current surge. This condition could have been a reverse current into the
battery, since the instrumentation system does not indicate the direction
of current. Immediately after the current surges, battery 1 current re-
turned to its original value while battery 2 provided about 80 percent of
the total current load. After sustaining a surge load, the battery termi-
nal voltage normally increases for a short period of time. Since battery 2
experienced the highest surge, it should have temporarily assumed the most
load. Within 10 minutes all batteries were properly sharing the current
load, and no subsequent sbnormal performance was observed. At 99:51:09,
battery 2 gave an indication of a battery malfunction, discussed in more
detail in the next section.

Evidence indicates that battery 2 may have experienced an electrical
fault of some type. The most probable condition is electrolyte leaking
from one or more cells and bridging the high-voltage or low-voltage ter-
minal to the battery case (fig. 1L-17). This bridging results in water
electrolysis and subsequent ignition of the hydrogen and oxygen so gener-
ated. The accompanying "explosion” would then blow off or rupture the
seal of the battery 1id and cause both a thump and venting of the free
liquids in the battery case, resulting in "snowflakes."

Postflight tests have shown the following:

a. Electrolyte can leak past the Teflon retention screens installed
in each cell to prevent leakage.

b. The descent battery cells contain an excessive amount of free
electrolyte.

c. The potting does not adhere to the battery case, consequently,
any free electrolyte can readily penetrate the interface between the
potting and the case and bridge between the terminals and case.

d. Once an electrolyte bridge is formed, electrolysis will produce
hydrogen and oxygen gas.

e. A bridge at the positive terminal can produce a current surge of
as much as 150 amperes.
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For Apollo 14 and subsequent missions, the descent batteries will be
modified to minimize the hazards associated with electrolyte leakage.

NASA-5-70-5859
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Figure 14-17.- Descent battery terminal configuration.

The battery potting will be improved to prevent electrolyte bridging
between the battery terminals and case. These improvements include coat-
ing the inside of the battery case with epoxy paint before the battery is
assembled and changing the potting material used at the ends of the case
to a material which has better adhesion characteristics. Alsc, the cell

chimneys will be manifolded together and to the case vent-valve with
plastic tubing.

in addition, tests are being performed to determine if the gquantity
of free electrolyte in each cell can be reduced. Preliminary results in-
dicate a reduction of from 360 to 3L0 ce rer cell is possible.
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The designs of other Apollo batteries have been reevaluated, and all
are considered safe except the lunar module ascent batteries and the lunar
surface drill battery. The ascent batteries and a new battery to be in-
stalled in subsequent service modules will receive the same corrective
action applied to the descent battery. The lunar surface drill battery,
which previously was unpotted, will be potied.

This anomaly is closed.

14.2.3 Descent Battery 2 Malfunction Light On

The battery malfunction light illuminated at about 100 hours with a
corresponding master alarm. The malfunction, isclated to battery 2, could
have been caused by an overcurrent, a reverse-current conditicn, an over-
temperature condition, or possibly an erroneous indication. The logic
for these malfunction conditions is shown in figure 1L-18.
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Figure 1L-18.- Battery 2 malfunction circuit.

A battery overcurrent can be ruled out because autcmatic removal of
the battery from the bus would have cccurred.
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A reverse-current condition can be ruled out because, if the battery
is removed from and reapplied to the bus, the reverse-current cireuit has
a built-in delay of about 5 seconds before the reverse-current relay is
again activated to illuminate the light. Battery power was removed from
and replaced on the bus in flight, and the light immediately illuminated
again when the battery was reconnected.

An over-temperature condition can be ruled out because, after the
battery was replaced on the bus, the light remained illuminated for a
brief period and then began flickering intermittently. A flickering
light cannot be caused by the temperature sensing switch because of a
temperature hysteresis of approximately 20° F in the switch. The water
glycol loop temperature also indicated that the battery temperature was
normal .

Either a short between the temperature switch wires to ground or a
contamination in the suxiliary relay would actuate the light. The shorted
condition could have resulted from electroclyte shorting within the battery
case assoclated with the current surges discussed in the previous section.
Contamination of the auxiliary relay has occurred in the past, and relays
already packaged were not retrofitted since a false over-temperature indi-
cation can be identified as it was here.

Corrective action is being taken to prevent electrolyte shorts as-
sociated with the previously discussed battery anomaly which should elim-
inate this type of sensor prcoblem in future spacecraft. No further cor-
rective action to eliminate contamination in the auxiliary relay is re-
quired.

This anomaly is closed.

1k.2.4  Ascent Oxygen Tank 2 Shutoff Valve Leak

During the flight, the pressure in the ascent stage oxygen tank 2
increased, indicating a reverse leakage through the shutoff valve from
the oxygen manifold (fig. 14-19) into the tank. The leak rate, with a
maximum differential pressure of 193 psi, varied from about 0.22 1b/hr
(70 000 scc/hr) to zero when the tank pressure reached manifold pressure.
Allowable leskage for the valve in either direction is 360 scc/hr. Pre-
flight test data indicate a reverse leakage of 360 scc/hr and no exces-
sive leaking in the forward direction.

The internal portion of three valves of this type had been replaced
previously on the spacecraft because of excessive leaskage through the
ascent oxygen tank 1 shutoff wvalve. In one valve, a rolled O-ring
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(fig. 14-20) caused the leakage. When the valve is installed, the for-

ward O-ring can be rolled and damaged when it passes the manifold port.

In the other two valves, the cause was not identified and was assumed to
be contamination.

The production tolerances of the valve and bore were examined to
determine if a tolerance buildup problem existed. The manufacturer's
specificaticn to which the valve was designed regquires that the O-ring
be subjected to a compression of between 0.0115 and 0.0225 inch, whereas
the O-ring supplier recommends between 0.011 and 0.017 inch. The added
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compression allowed in the valve design would aggravate the tendancy for
the O-ring to roll during valve assembly.

Leak tests previously performed on the valve were inadequate, in
that only reverse leakage at high pressure was determined. For future
vehicles, forward and reverse leskage at both high and low pressures
will be measured to detect any defective valves.

This anomaly is closed.

1k.2.5 Cracked Window Shade

The left-~hand window shade showed three large separsations when it
was first placed in the stowed position during flight (fig. 14-21). A
Beta Cloth backing is stitched to the inner surface of the Aclar shade.
The cracks propagated from the sewing stitch holes on the periphery of
the shade. About 1/8-inch-long cracks extended from about 80 percent
of the stitch holes in a direction parallel with the curl axis of the
shade. '
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Figure 14-21.- Cracked left-hand window shade.
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Cracking as a result of Aclar embrittlement has occurred before,
therefore, the Apollo 13 shades were examined prior to flight. Since
nc cracks were found, the shades were approved for flight.

The Aclar supplier has develcoped a heating and quenching process
to provide material with an elongation in excess of 25 percent, as com-
pared to elongations of from 6 to 12 percent for the failed shades.
Shades for future vehicles will be fabricated from this more ductile
material. The Aclar will be reinforced with Mylar tape before the Beta
Cloth backing is stitched to the shade. The modified shades have been
requalified for the next flight.

This anocmaly is closed.
14.3 GOVERNMENT FURNISHED EQUIPMENT

14.3.1 Loose Lens Bumper On Lunar Module l6-mm Camera

For launch, the 1l6-mm camera is mounted to point through the Lunar
Module Pilot's window with the 10-mm lens and bumper attached. At the
time of inflight lunar module inspection, the bumper was found to have
separated from the camera lens. The bumper was replaced and remained
attached for the remainder of the flight. Looseness has been experi-
enced during previous lens/bumper assemblies.

To prevent recurrence of the problem, the mating surface of the
bumper will be swaged for future missions so as to provide an interfer-
ence fit with the internal surface threads of the 10-mm lens assembly.

This anomaly is closed.

14.3.2 Failure of the Interval Timer Set Knob

The onboard interval timer, which has two timing ranges (0 to 6 and
0 to A0 minutes), is stowed in the command module for crew use in timing
such routine functions as fuel cell purges, cryogenic system fan cycles,
and so forth. A tone adviges the crew when the set time periocd has
elapsed. Prior to 55 hours, the time-period set knob came off in a crew-
man's hand because of a loosened set screw. The set screw had been se-
cured with a special gripping compound. Postflight examination of other
flight timers indicated that this compound spparently does not provide
a strong enough retention force for this application. Therefore, the
knobs on timers for future flights will be secured to the shaft with a
roll pin.

This anomaly is closed.



14-37

14.3.3 Improper Nasal Spray Operation

When attempts were made to use the two nasal spray bottles in the
command module medical kit, no medication could be obtained from one
bottle and only two or three sprays could be obtained from the other.

On previous flights, there had been a tendency for the spray to be re-
leased too fast, therefore a piece of cotton was inserted in the 9-cc
bottle to hold the 3 cec of medication. Chamber tests and ambient shelf-
life tests have indicated that this change was satisfactory. Those tests
have also shown that, for best results, the bottle should be squeezed
where the cotton is located. Postflight examination of the one returned
bottle demonstrated satisfactory operation under normal gravity. The
returned bottle still contained 2.5 cc of medication after five or six
test sprays.

Medical kits for future flights will include nose drops packaged
the same as the eye drops. This packaging has been satisfactory on pre-
viocus flight for eye drops.

This anomaly is closed.
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15.0 CONCLUSTIONS

The Apollo 13 mission was the first in the Program requiring an
emergency sbort, with the Gemini VIII mission the only prior case in
manned spaceflight where a flight was terminated early. The excellent
performance of the lunar module systems in a backup capacity and the
training of both the flight crew and ground support personnel resulted
in the safe and efficient return of the crew. The following conclusions
are drawn from the information contained in this report.

a. The mission was aborted because of the total loss of primary
oxygen in the service module. This loss resulted from an incompatibility
between switch design and preflight procedures, a condition which, when
combined with an abnormal preflight detanking procedure, caused an in-
flight shorting and a rapid oxidation within one of two redundant storage
tanks. The oxidation then resulted in a loss of pressure integrity in
the related tank and eventually in the remaining tank.

b. The concept of a backup crew was proven for the first time when
3 days prior to flight the backup Command Module Pilot was substituted
for his prime-crew counterpart, who was exposed and susceptible to
rubella (CGerman measles).

¢. The performance of lunar module systems demonstrated an emer-
gency operational capability. Lunar module systems supported the crew
for a period approximately twice their intended design lifetime.

d. The effectiveness of preflight crew training, especially in con-
Junction with ground personnel, was reflected in the skill and precision
with which the crew responded to the emergency.

e. Although the mission was not a complete success, a lunar flyby
mission, including three planned experiments (lightning phenomena, earth
photography, and S-IVB lunar impact), was completed and information which
would have otherwise been unavailable, regarding the long-term backup
capability of the lunar meodule, was derived.



APPENDIX A - VEHICLE DESCRIPTIONS

The configuration of the Apollo 13 spacecraft and launch vehicle
was nearly identical to that of Apollo 12, and the spacecraft/launch
vehicle adapter and launch escape system underwent no changes. The few
changes to the command and service modules and the lunar module are dis-
cussed in the following paragraphs. A discussion of the changes to the
Apollo lunar surface experiments package and a listing of the spacecraft
mass properties are also presented.

A.l1 COMMAND AND SERVICE MODULES

The structure in the forward end of the docking tunnel was rein-
forced to accommodate the expected higher parachute loads due to the in-
creased weight of the command module. In the sequential system the timing
signal which disables the roll engines during service module separation
was chenged from a 5.5- to a 2-second interval, and a cutoff time of
25 seconds was incorporated for the translation engines instead of allow-
ing them to fire until the propellant was depleted. These timing changes
were instituted to minimize the effects of fuel slosh and to improve
service-module separation characteristies. The stripline units in the
high-gain antenna were changed to an improved design. A detachable filter
was provided for installing over the cabin heat exchanger exhaust to assist
in collection of free lunar dust after crew transfer from the lunar module.
An extra urine filter, in addition to the primary and backup units, was
stowed and could be used to reduce the possibility of a clogged urine trans-
fer line. Also included was a lunar topographic camera, which could be
installed in the command module hatch window for high resolution photog-
raphy of the lunar surface from orbit. The camera provided a L.5-inch
film format and had an 18-inch focal length and image-motion compensation.
The photographs would yield a resolution of approximately 12 feet and
would include a 15-mile square area on the surface for each frame exposed.

A.2 TLUNAR MODULE

The thickness of the outer-skin shielding for the forward hatch was
increased from 0.004 to 0.010 inch to improve the resistance to the tear-
ing that was noted on Apolle 12. The D-ring handle on the modularized
equipment storage assembly was changed to a looped csble to simplify the
deployment operation. The thermal insulation for the landing gear was
modified to reduce the total insulation weight by 27.2 pounds. Both a
color and & black-and-white television camera were included for increased



reliability of television coverage on the lunar surface. The primary
guidance programs were modified to permit reentry into the automatic and
attitude hold modes of operation after manual control was exercised; this
change was incorporated to provide improved final descent capability in
the event of obscuration from lunar dust. The event timer was modified
so that after it counted down to zero, it would count up automatically
and thus reduce crew workload during critical events. The descent pro-
pulsion system was changed to include a bypass line arocund the fuel/helium
heat exchanger such that if the heat exchanger should freeze during vent-
ing, pressures would equalize on bhoth sides of the heat exchanger. The
sensing point for the water separator drain tank was changed from the
location of the carbon dicxide sensor to a point upstream of the suit
fans, thus eliminating migration of water to the carbon dioxide sensor
and improving its operation. A removable flow limiter was added to the
inlet for the primary lithium hydroxide cartridge to reduce the water
separator speed and to minimize the possibility of condensed water in

the suit. A dust filter was incorporated at the inlet of the cabin fan
to reduce the amount of free lunar dust in the cabin. Redesigned water/
glycol and oxygen disconnects having redundant seals were installed to
improve reliagbility and to permit up to 5 degrees of connector misalign-
ment. To decrease the possibility of lunar dust contamination, a brush
was added for cleaning the suits before ingress, the bristles on the
vacuum brush were changed from Teflon to Nylon, and a cover was added to
the lunar sample tote bag.

The extravehicular mobility unit underwent several modifications to
improve lunar surface capability. Scuff patches were added to the pres-
sure garment assembly to prevent wear of the thermal/meteoroid garment
caused by chaffing of the lunar boots. A device was added in the neck
area of the pressure suit to provide drinking water to the crewmen during
extravehicular activity. A center eyeshade was installed at the top of
the extravehicular visor assembly to reduce incoming glare and to aid in
dark adaptation when entering shadow. Abrasion cover gloves were included
to be used over the extravehicular gloves to reduce wear and heat conduc-
tion during core drilling operations. The electrical connnector on the
remote control unit for the portable life support system was redesigned
to permit easier engagement. The manufacturing technique for the regu-
lator in the oxygen purge system was modified to minimize the possibility
of gas leakage.

A.3 EXPERIMENT EQUIPMENT

The Apollo lunar surface experiment package stowed for Apcllo 13
was similar to that for Apollo 12. However, the solar wind spectrometer,
magnetometer, and suprathermal ion detector, included on Apollo 12, were
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deleted from Apollo 13. A heat flow experiment and a charged particle
environment detector were added for Apollo 13. The cold-cathode ion gage
experiment deployed during Apollo 12 was significantly modified for
Apollo 13.

The Apcllo lunar surface experiments package consisted of two sub-
packages as shown in figures A-1 and A-2. These were stowed in the lunar
module scientific equipment bay.
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Figure A-~l.- Experiment subpackage number 1.

A.3.1 Heat Flow Experiment

The heat flow experiment was designed to measure the thermal gradient
of the upper 3 meters of the lunar crust and the thermal conductivity of
the lunar surface materials. Lunar heat flow caleculations could be based
on the measurements.

The experiment consisted of an electronics package and twe sensor
prebes which were to be placed in bore holes, predrilled by the crew using
the Apollec lunar surface drill, At each end of the probe was a gradient
heat sensor with heater coil, a ring sensor 10 centimeters from each end,
and four thermocouples in the probe cable. The probe consisted of two
55-centimeter sections joined at a 2-inch spacing with a flexible spring.
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FPigure A-2.- Experiment subpackage number 2.
A.3.2 Charged Particle Lunar Environment Experiment

The charged particle lunar environment experiment was designed to
measure the energy of protons and electrons in the energy range of 40 to
T0 electron volts. The experiment consisted of two detector/analyzer
packages, each oriented for minimum exposure to the eclystic path of the
sun, one for the east-west plane and one for the north-south plane. HFach
of the detector packages had six particle energy detectors. A complete
measurement of all energy ranges would be made every 19.4 seconds.

A.3.3 Cold Cathode Gage Experiment

The cold cathode gage experiment was designed to measure the density
of the lunar atmosphere by sensing the particle density immediately around
its deployed position. An electrical current would be produced in the
gage proportional to particle density. Pressure of the ambient atmosphere
could be calculated, based on the measurements of the density of the

neutral atoms.

The experiment consisted of an electronics package with sunshield
and reflector, to shade the thermal plate from the direct sunlight, and
a sensor package with aperture and dust cover.
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Spray foam was used exclusively as insulation in the S-II stage to
reduce weight. A fourth battery was installed in the instrument unit to
extend the tracking capability to lunar distance in support of the S-IVB
lunar impact experiment. Telemetry measurements in the inertial platform
were added and, in some cases, were relocated to provide s more complete
anglysis of platform vibrations. Four wires were added to the distributor
in the emergency detection system, located in the instrument unit, to
provide automatic ground command capabllity at spacecraft separation in
the event of a contingency separation.

A.5 MASS PROPERTIES

Spacecraft mass properties for the Apollo 12 mission are summarized
in table A-I. These data represent the conditions as determined from
postflight analyses of expendable loadings and usage during the flight,
Variations 1n spacecraft mass properties are determined for each signif-
icant mission phase from lift-off through landing. Expendables usage is
based on reported real-time and postflight data as presented in other
sections of this report. The weights and centers of gravity of the in-
dividual command and service modules and of the lunar module ascent and
descent stages were measured prior to flight, and the inertia values were
calculated. All changes incorporated after the actual weighing were mon-
itored, and the spacecraft mass properties were updated.



TABLE A-I.- MASS PROPERTIES

Center of gravity, in.

Moment of inertia, sl\.\g-i‘!:2

Product of inertia,

. F2
Event Height, slug-ft
X ¥ z Tex Iyy T2z e | Iw Lyz
Lift-off 110 252.4] B47.4 2.4 3.7 67 646 1 175 539 |1 178 016 2906 | B 04T [ 3711
Earth orbit insertion 101 261.2| B807T.h4 2.6 4.1 66 770 718 686 21 213 5157 [11 945 | 3688
Transposition and dockinga
Command & service modules | 63 720.3| 934.5 4.0 6.5 33 995 76 486 79 123 | ~-17L6 -126 | 3221
Lunar module 33 499.1) 1237.0 | -0.1 Q.0 22 457 24 654 25 255 =43k 95 235
Total docked 97 219.4 | 1038.7 2.6 4.3 56 736 534 890 538 009 | -B1k2 | -9376 | 3585
First midcourse correctiom
Ignition 97 081.5] 1038.9 2.6 4.2 56 629 534 493 537 635 | -8B192 | -9305 | 3620
cutoft 96 851.1| 1035.0 2.6 4.2 56 508 534 139 537 380 | -8189 | -9282 | 3587
Cryoxenic oxygen tank
incident
Before 96 646.9| 1039.2 2.6 4.2 56 321 533 499 536 766 | -8239 | -92h4 | 3636
After 96 038.7§ 10b0.7 3.0 3.9 57 2L8 533 927 537 251 § -8269 | -B993 {-3709
Second midcourse correction
Ignition 95 959.9| 378.8 k.g 0.7 57 205 516 L43 521 180 | 11617 2659 | 3286
Cutoff 95 6LT.1| 379.L 5.0 0.7 57 006 513 919 518 700 | 21553 2651 | 3285
Transearth inJecticnb
Ignition 95 k2k.o| 319.7 | 5.0 0.7 56 866 512 837 | 517 560 | 11370 | 2495 | 3255
Cutoff 871 ks6.0( 398.4 5.5 0.8 51 778 431 285 437 119 9uh3 2222 | 3249
Third midcourse correctionh
Ignition 87 3ws5.3| 398.7 5.5 51 681 430 123 L35 930 92bb 20L8 | 3215
Cutoff 87 263.31 2398.9 5.5 0.8 51 642 h29 353 435 169 9227 20ks | 3215
Fourth midcourse cerrectlonb
Ignition B7 132.1] 399.1 5.5 0.8 51 553 k28 322 434 105 9069 1911 | 3191
Cutoff 87 101.5| 3%9.2 5.6 0.8 51 538 k28 219 L33 990 9065 1910 | 3192
Command & service module
separat.ionb
Before 87 057.3] 399.3 5.6 0.8 51 317 L28 065 L33 819 9058 1909 | 3194
After {command module/ 37 109.7| 251.5 2.2 0.3 24 ouB 92 418 93 809 2362 ~989 9
lunar module)
Command module/lunsr
module aeparaticna
Before® 37 o146 252.9 | 1.9 | -0.6 | 23 926 93 993 95 514 | 2188 | -963 | -35
After (command module) 12 367.6 | 1039.9 0.3 6.1 5 815 5 258 4 636 31 ~kog 20
Entry 12 361.4 | 1039.9 0.3 6.0 5 812 5 254 k635 31 =bot 21
Drogue deployment 11 89.4 | 1038.7 0.3 6.0 5 727 5 002 L los 33 -382 24
Main perachute deployment 11 579.81 1038.6 0.5 5.3 5 590 L 812 4 346 27 -319 41
Lending 11 132.9| 1036.6 0.5 5.2 5 526 4 531 L oké 25 -328 Lp

8 unar module was docked to the

b
Mass properties are referenced

control during these phases,

command module from initial docking until Just prior to entry.

to the coordinate system of the lunar module, which provided spacecraft dynamic




APPENDIX B -~ SPACECRAFT HISTORIES

The history of command and service module (CSM 109) operations at
the manufacturer's facility, Downey, California, is shown in figure B-1,
and the operations at Kennedy Space Center, Florida, in figure B-Z2.

The history of the lunar module (IM-T) at the manufacturer's facil-
ity, Bethpage, New York, is shown in figure B-3, and the operations at
Kennedy Space Center, Florida, in figure B-k.

NASA-S-70-5866

1968 1969

December | January | February | March April May June

Individual and combined
systems checkout
I" Integrated systems test

Modifications and retest- _ -
Final installation and checkout-"l I

Weight and balance I

Prepare for shipment and ship .

Figure B-l.~ Checkout flow for command and service modules
at contractor's facility.
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-I Spacecraft/ launch vehicle assembiy
l I - Systems tests on pad
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Countdown demonstration test -
Countdown
Note: Command and service modules . -
delivered to Kennedy Space Center » Launch v
on June 25, 1969,
Figure B-2.- Command and service module checkout
history at Kennedy Space Center.
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Figure B-3.- Checkout flow for lunar module at
contractor's facility.
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on June 27, 1969.

Figure R-k.- Lunar module checkout history at
Kennedy Space Center,
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APPENDIX € - POSTFLIGHT TESTING

The command module arrived at the contractor's facility in Downey, ’
California, on April 27, 1970, after reaction control system deactivation
and pyrotechnic safing in Hawaii. Postflight testing and inspection of
the command mcdule for evaluation of the inflight performance and inves-
tigation of the flight irregularities were conducted at the contractor’s
and vendors' facilities in accordance with approved Apollo Spacecraft
Hardware Utilization Requests (ASHUR's). The tests performed as a result
of inflight problems are described in table C-I and discussed in the ap-
propriate systems performance sections of this report. Tests being con—
ducted for other purposes in accordance with other ASHUR's and the basic
contract are not included.

TABLE C-I.- POSTFLIGHT TESTING SUMMARY

ASHUR Purpose Tests performed Eesults

Environmental Control

109007 To determine contaminates present Anglyze the oxygen filters
or demage incurred in 900 psi upstream of restrictors and
system check valves for contaminates.

Perform acceptance test of
oxygen ir air regulator

109008 Te determine contaminates gpresent Withdraw sample and analyze for Ne sigrificant difference
in residual oxygen in surge tank contaminates from the aralysis per-
end repressurization package formed at :.ading

109016 To investigate the failure of the Determine position of inlet wvalve Not conmplete
postlanding ventilation valve to mechanical safety pin. Attempt
eycle open 1o operate valve, then remove

for failure analysis

109620 Ts determine the csuse of railure Perform cellbration check, dis- Hot compliete
¢ the suit pressure transducer assembly, and failure analysis

103021 To determine the cause of failurs Remove, disassemble, and per- Hot complete
of the potable water transducer form failure analysis

Juidance and Navigation

109015 To investigate the cause for optics pPerformance check of zero opties Unable to perform tests on
coupling display unit indications mede operation optical unit due to salt
of optics movement during the water contamination

zero optics mode

159018 T¢ investigate the failure of the Verify the 0.05g entry ronitor dot complete
0.05g indication during entry system circuit, check the con-
nestors, lamp, and wiring




APPENDIX D — DATA AVAILABILITY

Tables D~I and D-II are summaries of the data made available for
systems performance analyses and anomaly investigations.
the data from the command and service modules, and table D-1II, for the
Iunar mecdule.
the status listing of all mission data in the Central Metric Data File,
building 12, MSC, should be consulted.

Table D-TI lists

TABLE D-I.- COMMAND AND SERVICE MODULE DATA AVAILARILITY

For additional information regarding data availability,

Time, hrimin Range Bandpass . Computers’ O'greaph Hrush
station plots Bilevels words records records

From To or tabs

00:00 00:12 MILA X X X X X

00:02 00:1L BDA X b

00:0k4 Ok hl MSFN X X

00:07 00:18 VAN X X % X

00:1k 00:28 cYI X X X X

01:31 01:33 GDS X X X X

01:33 01:k5 MILA X X % B

01:48 01:59 cYI X X X Iy

02:25 02:34 CRO X X X he

02:3h 02:45 HAW X

02:b3 02:50 HAW X X e X

02:49 13:59 GDS X X X X

Ob: Lk 08:35 MSFN X X X

08:35 12:49 MSFN X X X

12:49 16 -4k MSFN X X X

13:18 17:12 HSK X X b b3

16: 4L 20:37 MSFN X X X

17:15 25:00 MAD X X X X

20:37 27:01 MSFN X X X

2k:53 37:42 GDS X X X X

27:01 L0155 MSFN X X X

37:33 L2 47 HSK X X X X

Lo:ss 4k:38 MSFN X X X

Lk :38 52137 MSFN X X X

50:21 58:39 GDS X X X X X

52:37 58:39 MSFN X X X

101:53 | 101:58 GDS X X

123:03 | 123:12 GDs X X

1h0:12 | 141:08 HSK X X

140:15 | 1k2:39 MSFN X X X

140:48 | 141:50 GWM X X

141:26 | 1h2:1h CRO X

142:12 142:38 CRO X X X

142:36 | 1h2:4L ARIA X X X

1h2:40 § 1b2:58 ARTIA X X X

Gpecial
plots
or tabs

X

bpecial
prosrams

b




TABLE D-IT.- LUNAR MODULE DATA AVAILABILITY - Concluded

Time, hr:min Bandpass 4 Opecial .
g, | mots | puievens | Cmery Qe ) D | e | RO

From To or taebs i or tabs

57:57 58:05 GDS X X X

57:5T 60:36 MSFN X X X

58:12 59:12 GDS X X X

60:36 64150 MSFN X X X

61:10 62:10 GDS X X X X X % X

6L ;52 68:26 MSFN X X

65:07 66:07 HSK X

68:26 T2:2L MSFN X X

2:32 77:03 MSFN X X

77:03 80:29 MSFN X X X

78147 T9: b7 GDS X X X X X X X

80:29 96:29 MSFN X X

93:30 93:ko MAD X X

9L :56 95:05 MAD X

96:29 | 100:33 MSFN X X

97:11 97:18 MAD X X X

97:12 97:18 ACN X -

99 :2h 99:57 GDS X X X b

99:50 | 100:24 GDS X X

100:33 | 10L:57 MSFN X X

101:00 | 101:07 GDS X

1w0L:19 | 105:19 GDS X X X

ick:s7 | 108:36 MSFN X X X

165:15 | 105:53 GDS X X X X X

108:36 1 112:35 MSFN X X

108:52 | 109:08 GDS X

109:12 | 109:25 GDS X X X

112:35 | 120:28 MSFN X X

117:33 | 120:3k MAD X X

102:28 | 136:52 MSFN X X X

133:46 | 13b4:39 GDS X

134:20 | 135:20 HSK X

136:30 | 136:50 HSK X

136:52 | 138:34 MSFN % X X

137:1h | 138:1h4 HSK X X X X X X

138:34 | 142:38 MSFN X X X

141:25 | 1L1:35 CRO X

1k1:28 | 1bi:32 GWM X X X X X X




APPENDIX E - MISSION REPORT SUPPLEMENTS

Table E-I contains a listing of all supplemental reports that are
or will be published for the Apollo T through Apollo 13 mission reports.
Also indicated in the table is the present status of each report not
published or the publication date for those which have been completed.



TABLE E-I.- MISSION REPORT SUPPLEMENTS

Supplement . Publicatlion
nunber Title date/status
Apcollo T
1 Trajectory Reconstruction and Analysis May 1969
2 Communication System Performance June 1969
3 Guidance, Navigation, and Control System Novenmber 1969
Performance Analysis
4 Reaction Control System Performance August 1969
5 Cancelled
6 Entry Postflight Analysis December 1969
Apollo 8
1 Trajectory Reconstruction and Analysis December 1969
2 Guidance, Navigation, and Contrcl System November 1969
Performance Analysis
3 Performance of Command and Service Module March 1970
Reaction Control System
Y Service Propulsion System Final Flight September 1970
Evaluation
6 Analysis of Apollo 8 Photography and December 1969
Visual Observations
7 Entry Postflight Analysis December 1969
Apollo 9
1 Trajectory Reconstruction and Analysis November 1969
2 Command and Service Module Guidance, Navi- November 1969
gation, and Control System Performance
3 Lunar Module Abort Guidance System Perform- November 1969
' ance Analysis
Y Performance of Command and Service Module April 1970
Reaction Control System
5 Service Propulsion System Final Flight December 1969
Evaluation
6 Performance of Lunar Module Reaction Control Final review
System
T Ascent Propulsion System Final Flight December 1969
Evaluation
8 Descent Propulsion System Final Flight September 1970
Evaluation
9 Cancelled
10 Stroking Test Analysis December 1969
11 Communications System Performance Decenber 1969
12 Entry Postflight Analysis December 1969




TABLE E-I.- MISSION REPORT SUPPLEMENTS - Continued

Supplement . Publication
number Title date/status
Apollo 10
1 Trajectory Reconstruction and Analysis March 197C

2 Guidance, Navigation, and Control System December 1969
Performance Analysis
3 Performance of Command and Service Module Final review
Reaction Control System
Y Service Propulsion System Final Flight September 1970
Evaluation
5 Performance of Lunar Module Reaction Control Final review
System
6 Ascent Propulsion System Final Flight January 1970
Evaluation
T Descent Propulsion System Final Flight January 1970
Evalustion
8 Cancelled
9 Analysis of Apollo 10 Photography and Visual In publication
Observations
10 Entry Postflight Analysis December 1969
11 Communications System Performance December 1969
Apollo 11
1 Trajectory Reconstruction and Analysis May 1970
2 Guidance, Navigation, and Control System September 1970
Performance Analysis ;
3 Performance of Command and Service Module Review ‘
Reaction Control System '
L Service Propulsion System Final Flight Review
Evaluation
5 Performance of Lunar Module Reaction Control Review
System
6 Ascent Propulsion System Final Flight September 1970
Evaluation
T Descent Propulsion System Final Flight September 1970
Evaluation
8 Cancelled
9 Apollo 11 Preliminary Science Repor December 1969
10 Communications System Performance January 1970
11 Entry Postflight Analysis April 1970
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TABLE E-I.- MISSION REPORT SUPPLEMENTS - Concluded

Supplement \ Publication
number Title date/stsatus
Apollo 12
1 Trajectory Reconstruction and Analysis September 1970
2 Guidance, Navigation, and Control System September 1970
Performance Analysis
3 Service Propulsion System Final Flight Preparation
Evaluation
L Ascent Propulsion System Final Flight Preparation
Evaluation
5 Descent Propulsion System Final Flight Preparation
Evaluation
6 Apollo 12 Preliminary Science Report July 1970
T Landing Site Selection Processes Final review
Apollo 13
1 Guidance, Navigation, and Control System Review
Performance Analysis
2 Descent Propulsion System Final Flight Preparation
Evaluation
3 Entry Postflight Analysis Review
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Mission

Apollo 4
Apollo &
Apollo &
- Apollo T
Apollo 8
Apollo §

Apollo 10

Apollo 11

Apollo 12

Spacecraft

SC-017
LTA-10R

IM-1

8C-020
LTA-2R

CSM 101

CSM 103

CSM 104
IM-3

C8M 106
LMY

C8M 107
IM-5

CsM 108
IM-6

APOLLO SPACECRAFT FLIGHT HISTORY

(Continued from inside front cover)

Description

Supercircular
entry at lunar .
return velocity

First lunar
module flight

Verification of
closed-loop
energency detection
system

First manned flight;
earth-orbital

First manned lunar
orbital flight; first
manned Saturn V launch

First manned lunar
module flight; earth
orbit rendezvous; EVA
First lunar orbit
rendezvoys; low pmss
over lunar surface

First luner landing

Second lunar landing

Leunch _date

Nov. 9, 1967

Jan. 22, 1968

-April 4, 1968

Oct. 11, 1968

Dec. 21, 1968

Mar. 3, 1969

May 18, 1969

July 16, 1969

Nov. 14, 1969

Launch site
Kennedy Space
Center, Fla.
Cape Kennedy,
Fla.

Kennedy Space
Center, Fla.

Cape Kennedy,
Fla.

Kennedy Space

Kennedy Space
Center, Fla,

Kennedy Space
Center, Fla.

Kennedy Space
Center, Fla.

Kennedy Space
Center, Fla.
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MISSION REPORT QUEST |ONNAIRE

Mission Reports are prepared as an overall sumary of spscific Apollo flignt
results, with supplemental reports and separate anomaly reports providing the

engineering detail in selected areas.

Would you kindly complete this one-page

questionnaire so that our evaluation and reporting service to our readership might

be improved,

1. DC YOU THINK THE CONTENT OF THE MISSION REPORTS

E] LESS DETAILECD

SHOLULD BE:
l I MORE DETAILED

D ABOUT THE SAuE?

2, WOULD YOU SUGGEST ANY CHANGES TO THE

PRZSENT CONTENT?

3, YOUR COPY IS {check more than one),

D READ COMPLETELY D READ PARTIALLY

C] ROUTED TO OTHERS [] FILED FOR REFERENCE

Ej STANNED
E] DISCARDED

E] NOT REAZ OR SCAaNNED

DG1V£N To SowEanE TLSE

4. ON THE AVERAGE, HOW OFTEN

(3 more THAN 5 TimEs [ erom 2 10 5 TiMES

DO YOU REFER LATER TO A MISSION REPORT?

DONCE [ wever

5, REGARDING REPORT SUPPLEMENTS, YOU:

[Juse those vou recerve

E] DO NOT RECEIVE ANY, BUT WOULD LIKE TO

6. DO YOU WISH TO CONTINUE RECEIVING MISSION

DYES [ wo

REPORTS?

7. FURTHER SUGGESTIONS OR COMMENTS:

NAME ORGANI ZATIGN

ADDRESS

Please fold this form in half with the address on the outside, staple, and mail

the form to me,

Thank you for taking the time to complete this form.

Donald D. Arabian, Chiet
Test Division

MSC Form 884 (May 70)

NASA — MSC
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APOLLO SPACECRAFT FLIGHT HISTORY

(Continued from inside front cover)

Mission Spacecraft Description Launch date Launch site
Apollo 4 SC-0L7 Supercircular Nov. 9, 1967 Kennedy Space
LTA-10R entry at lunar Center, Fila.
return velocity
Apollo 5 IM-1 First lunar Jen. 22, 1968 Cape Kennedy,
module flight Fla.
Apollo 6 SC-020 Verification of April L, 1968 Kennedy Space
LTA-2R closed-loop Center, Fla.
emergency detection
system
Apollo T CSM 101 First manned flight; Oct. 11, 1968 Cape Kennedy,
earth-orbital Fla.
Apollo 8 CSM 103 First manned lunar Dec. 21, 1968 Kennedy Space
orbital flight; first
manned Saturn V launch
Apollo 9 C8M 10k First manned lunar Mar. 3, 1969 Kennedy Space
LM-3 module flight; earth Center, Fla.
orbit rendezvous; EVA
Apollo 10 CSM 106 First lunar orbit May 18, 1969 Kennedy Space
LM-4 rendezvous; low pass Center, Fla.
over lunar surface
Apollo 11 CB8M 107 First lunar landing July 16, 1969 Kennedy Space
LM-5 Center, Fla.
Apollo 12 CSM 108 Second lunar landing Nov. 1k, 1969 Kennedy Space
IM-6 Center, Fla.
Apollo 13 CsM 109 Aborted during trans- April 11, 1970 Kennedy Space
LM-T lunar flight because Center, Fla.

of ecryogenic oxygen loss
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