You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

143 lines
4.2 KiB

"""
Train a model using GRPO (Generative Reward-Penalized Optimization).
"""
from unsloth import FastLanguageModel, is_bfloat16_supported
import src.UnslothGRPOTrainerTemp as UnslothGRPOTrainerTemp
from config import (
MODEL_CONFIG,
MODEL_NAME,
OUTPUT_DIR,
TRAINING_CONFIG,
get_sampling_params,
init_training_dirs,
logger,
update_log_path,
)
# Import reward functions
from src import build_reward_correctness_fn, get_qa_dataset, reward_em_chunk, reward_format, reward_retry
from src.agent import Agent
from src.rewards import (
build_reward_correctness_fn,
reward_em_chunk,
reward_format,
reward_retry,
reward_search_diversity,
reward_search_strategy,
)
from src.search_module import get_qa_dataset
from src.tokenizer_adapter import LlamaTokenizerAdapter, QwenTokenizerAdapter, R1DistilTokenizerAdapter
# Initialize training directories
paths = init_training_dirs()
# Update logger to use the training directory
update_log_path(paths["log_dir"])
logger.info(f"Training output directory: {paths['output_dir']}")
logger.info(f"Logs are being saved to both ./logs and {paths['log_dir']}")
# Initialize model and tokenizer
logger.info(f"Initializing model {MODEL_NAME}")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=MODEL_NAME,
max_seq_length=MODEL_CONFIG["max_seq_length"],
load_in_4bit=True, # False for LoRA 16bit
fast_inference=True, # Enable vLLM fast inference
max_lora_rank=MODEL_CONFIG["lora_rank"],
gpu_memory_utilization=MODEL_CONFIG["gpu_memory_utilization"],
)
# Setup LoRA
logger.info("Setting up LoRA adapter")
model = FastLanguageModel.get_peft_model(
model,
r=MODEL_CONFIG["lora_rank"],
target_modules=MODEL_CONFIG["target_modules"],
lora_alpha=MODEL_CONFIG["lora_rank"],
use_gradient_checkpointing=True, # Enable long context finetuning
random_state=3407,
)
# Load datasets
logger.info("Loading datasets")
train_dataset, test_dataset = get_qa_dataset(randomize=False, test_size=0.1, seed=42)
logger.info(f"Loaded {len(train_dataset)} training examples and {len(test_dataset)} test examples")
# Setup training arguments
logger.info("Setting up training arguments")
training_args = UnslothGRPOTrainerTemp.UnslothGRPOConfig(
use_vllm=True, # use vLLM for fast inference!
use_agentic_generate=True, # use agentic generation
**TRAINING_CONFIG,
bf16=is_bfloat16_supported(),
fp16=not is_bfloat16_supported(),
output_dir=OUTPUT_DIR,
reward_weights=[4.0, 2.0, 1.0, 1.0, 1.0, 1.0],
)
# Setup model generation functions
def agentic_generate(
prompts: list,
generate_fn,
max_generations: int = 32,
max_new_tokens: int = 4096 * 2,
):
# Create agent with appropriate adapter based on tokenizer
tokenizer_name = tokenizer.name_or_path.lower()
if "deepseek-ai/deepseek-r1-distill" in tokenizer_name:
adapter = R1DistilTokenizerAdapter()
elif "llama" in tokenizer_name:
adapter = LlamaTokenizerAdapter()
elif "qwen" in tokenizer_name:
adapter = QwenTokenizerAdapter()
else:
raise ValueError(f"Unsupported tokenizer: {tokenizer_name}")
agent = Agent(adapter)
return agent.run_agent(generate_fn, tokenizer, prompts, max_generations, max_new_tokens=max_new_tokens)
model.agentic_generate = agentic_generate
# Setup verifier
logger.info("Setting up verifier")
verifier_sampling_params = get_sampling_params(temperature=0.1)
def verifier_generate_fn(inputs):
return model.fast_generate(
inputs,
sampling_params=verifier_sampling_params,
)
# Setup trainer
logger.info("Initializing trainer")
trainer = UnslothGRPOTrainerTemp.UnslothGRPOTrainer(
model=model,
processing_class=tokenizer,
reward_funcs=[
build_reward_correctness_fn(
vllm_generate_func=verifier_generate_fn,
tokenizer=tokenizer,
),
reward_format,
reward_retry,
reward_em_chunk,
reward_search_strategy,
reward_search_diversity,
],
args=training_args,
train_dataset=train_dataset,
)
# Train the model
if __name__ == "__main__":
logger.info("Starting training")
trainer.train()
logger.info("Training completed")
logger.info(f"Model saved to {OUTPUT_DIR}")