You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.4 KiB
125 lines
3.4 KiB
import os
|
|
|
|
from unsloth import FastLanguageModel, is_bfloat16_supported
|
|
|
|
import src.UnslothGRPOTrainerTemp as UnslothGRPOTrainerTemp
|
|
|
|
# Import reward functions
|
|
from src.rl_helpers import (
|
|
build_reward_correctness_fn,
|
|
get_qa_dataset,
|
|
reward_exact_match_chunk_query,
|
|
reward_formatting,
|
|
reward_retry_behavior,
|
|
run_agent,
|
|
)
|
|
from src.config import (
|
|
MODEL_CONFIG,
|
|
MODEL_NAME,
|
|
OUTPUT_DIR,
|
|
TRAINING_CONFIG,
|
|
get_sampling_params,
|
|
init_training_dirs,
|
|
logger,
|
|
update_log_path,
|
|
)
|
|
|
|
# Initialize training directories
|
|
paths = init_training_dirs()
|
|
|
|
# Update logger to use the training directory
|
|
update_log_path(paths["log_dir"])
|
|
logger.info(f"Training output directory: {paths['output_dir']}")
|
|
logger.info(f"Logs are being saved to both ./logs and {paths['log_dir']}")
|
|
|
|
# Initialize model and tokenizer
|
|
logger.info(f"Initializing model {MODEL_NAME}")
|
|
model, tokenizer = FastLanguageModel.from_pretrained(
|
|
model_name=MODEL_NAME,
|
|
max_seq_length=MODEL_CONFIG["max_seq_length"],
|
|
load_in_4bit=True, # False for LoRA 16bit
|
|
fast_inference=True, # Enable vLLM fast inference
|
|
max_lora_rank=MODEL_CONFIG["lora_rank"],
|
|
gpu_memory_utilization=MODEL_CONFIG["gpu_memory_utilization"],
|
|
)
|
|
|
|
# Setup LoRA
|
|
logger.info("Setting up LoRA adapter")
|
|
model = FastLanguageModel.get_peft_model(
|
|
model,
|
|
r=MODEL_CONFIG["lora_rank"],
|
|
target_modules=MODEL_CONFIG["target_modules"],
|
|
lora_alpha=MODEL_CONFIG["lora_rank"],
|
|
use_gradient_checkpointing=True, # Enable long context finetuning
|
|
random_state=3407,
|
|
)
|
|
|
|
# Load datasets
|
|
logger.info("Loading datasets")
|
|
train_dataset, test_dataset = get_qa_dataset()
|
|
logger.info(
|
|
f"Loaded {len(train_dataset)} training examples and {len(test_dataset)} test examples"
|
|
)
|
|
|
|
# Setup training arguments
|
|
logger.info("Setting up training arguments")
|
|
training_args = UnslothGRPOTrainerTemp.UnslothGRPOConfig(
|
|
use_vllm=True, # use vLLM for fast inference!
|
|
use_agentic_generate=True, # use agentic generation
|
|
**TRAINING_CONFIG,
|
|
bf16=is_bfloat16_supported(),
|
|
fp16=not is_bfloat16_supported(),
|
|
output_dir=OUTPUT_DIR,
|
|
# report_to="tensorboard", # ❓ Does't have billions of tensorboard files if set report to right here
|
|
)
|
|
|
|
|
|
# Setup model generation functions
|
|
def agentic_generate(
|
|
prompts: list,
|
|
generate_fn,
|
|
max_generations: int = 10,
|
|
):
|
|
return run_agent(generate_fn, tokenizer, prompts, max_generations)
|
|
|
|
|
|
model.agentic_generate = agentic_generate
|
|
|
|
# Setup verifier
|
|
logger.info("Setting up verifier")
|
|
verifier_sampling_params = get_sampling_params(temperature=0.1)
|
|
|
|
|
|
def verifier_generate_fn(inputs):
|
|
return model.fast_generate(
|
|
inputs,
|
|
sampling_params=verifier_sampling_params,
|
|
)
|
|
|
|
|
|
# Setup trainer
|
|
logger.info("Initializing trainer")
|
|
trainer = UnslothGRPOTrainerTemp.UnslothGRPOTrainer(
|
|
model=model,
|
|
processing_class=tokenizer,
|
|
reward_funcs=[
|
|
build_reward_correctness_fn(
|
|
verifier_generate_fn,
|
|
tokenizer,
|
|
log_file=os.path.join(paths["log_dir"], "qa_log.txt"),
|
|
),
|
|
reward_formatting,
|
|
reward_retry_behavior,
|
|
reward_exact_match_chunk_query,
|
|
],
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
)
|
|
|
|
# Train the model
|
|
if __name__ == "__main__":
|
|
logger.info("Starting training")
|
|
trainer.train()
|
|
logger.info("Training completed")
|
|
logger.info(f"Model saved to {OUTPUT_DIR}")
|