You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
6.0 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train R1 Distil\n",
"This notebook is for caching the model loading so that It wouldn't take so long to reload every time I change the trainer source code"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utils"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.append(\"..\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"from unsloth import FastLanguageModel, is_bfloat16_supported\n",
"\n",
"import src.UnslothGRPOTrainerTemp as UnslothGRPOTrainerTemp\n",
"from src.config import (\n",
" MODEL_CONFIG,\n",
" MODEL_NAME,\n",
" OUTPUT_DIR,\n",
" TRAINING_CONFIG,\n",
" get_sampling_params,\n",
" init_training_dirs,\n",
" logger,\n",
" update_log_path,\n",
")\n",
"\n",
"# Import reward functions\n",
"from src.rl_helpers import (\n",
" build_reward_correctness_fn,\n",
" get_qa_dataset,\n",
" reward_exact_match_chunk_query,\n",
" reward_formatting,\n",
" reward_retry_behavior,\n",
" run_agent,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize training directories\n",
"paths = init_training_dirs()\n",
"\n",
"# Update logger to use the training directory\n",
"update_log_path(paths[\"log_dir\"])\n",
"logger.info(f\"Training output directory: {paths['output_dir']}\")\n",
"logger.info(f\"Logs are being saved to both ./logs and {paths['log_dir']}\")\n",
"\n",
"\n",
"# Initialize model and tokenizer\n",
"logger.info(f\"Initializing model {MODEL_NAME}\")\n",
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name=MODEL_NAME,\n",
" max_seq_length=MODEL_CONFIG[\"max_seq_length\"],\n",
" load_in_4bit=True, # False for LoRA 16bit\n",
" fast_inference=True, # Enable vLLM fast inference\n",
" max_lora_rank=MODEL_CONFIG[\"lora_rank\"],\n",
" gpu_memory_utilization=MODEL_CONFIG[\"gpu_memory_utilization\"],\n",
")\n",
"\n",
"# Setup LoRA\n",
"logger.info(\"Setting up LoRA adapter\")\n",
"model = FastLanguageModel.get_peft_model(\n",
" model,\n",
" r=MODEL_CONFIG[\"lora_rank\"],\n",
" target_modules=MODEL_CONFIG[\"target_modules\"],\n",
" lora_alpha=MODEL_CONFIG[\"lora_rank\"],\n",
" use_gradient_checkpointing=True, # Enable long context finetuning\n",
" random_state=3407,\n",
")\n",
"\n",
"# Load datasets\n",
"logger.info(\"Loading datasets\")\n",
"train_dataset, test_dataset = get_qa_dataset()\n",
"logger.info(\n",
" f\"Loaded {len(train_dataset)} training examples and {len(test_dataset)} test examples\"\n",
")\n",
"\n",
"# Setup training arguments\n",
"logger.info(\"Setting up training arguments\")\n",
"training_args = UnslothGRPOTrainerTemp.UnslothGRPOConfig(\n",
" use_vllm=True, # use vLLM for fast inference!\n",
" use_agentic_generate=True, # use agentic generation\n",
" **TRAINING_CONFIG,\n",
" bf16=is_bfloat16_supported(),\n",
" fp16=not is_bfloat16_supported(),\n",
" output_dir=OUTPUT_DIR,\n",
" # report_to=\"tensorboard\", # ❓ Does't have billions of tensorboard files if set report to right here\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Setup model generation functions\n",
"def agentic_generate(\n",
" prompts: list,\n",
" generate_fn,\n",
" max_generations: int = 10,\n",
"):\n",
" return run_agent(generate_fn, tokenizer, prompts, max_generations)\n",
"\n",
"\n",
"model.agentic_generate = agentic_generate\n",
"\n",
"# Setup verifier\n",
"logger.info(\"Setting up verifier\")\n",
"verifier_sampling_params = get_sampling_params(temperature=0.1)\n",
"\n",
"\n",
"def verifier_generate_fn(inputs):\n",
" return model.fast_generate(\n",
" inputs,\n",
" sampling_params=verifier_sampling_params,\n",
" )\n",
"\n",
"\n",
"# Setup trainer\n",
"logger.info(\"Initializing trainer\")\n",
"trainer = UnslothGRPOTrainerTemp.UnslothGRPOTrainer(\n",
" model=model,\n",
" processing_class=tokenizer,\n",
" reward_funcs=[\n",
" build_reward_correctness_fn(\n",
" verifier_generate_fn,\n",
" tokenizer,\n",
" log_file=os.path.join(paths[\"log_dir\"], \"qa_log.txt\"),\n",
" ),\n",
" reward_formatting,\n",
" reward_retry_behavior,\n",
" reward_exact_match_chunk_query,\n",
" ],\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
")\n",
"\n",
"print(\"Trainer initialized successfully! Starting training...\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Train the model\n",
"if __name__ == \"__main__\":\n",
" logger.info(\"Starting training\")\n",
" trainer.train()\n",
" logger.info(\"Training completed\")\n",
" logger.info(f\"Model saved to {OUTPUT_DIR}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deepsearch-py311",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}