You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.7 KiB
125 lines
3.7 KiB
"""Simple script to evaluate base model performance."""
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
|
|
# Add project root to Python path
|
|
project_root = str(Path(__file__).parent.parent)
|
|
sys.path.append(project_root)
|
|
|
|
from unsloth import FastLanguageModel
|
|
from vllm import SamplingParams
|
|
|
|
from config import logger
|
|
from src import (
|
|
apply_chat_template,
|
|
build_reward_correctness_fn,
|
|
build_user_prompt,
|
|
get_system_prompt,
|
|
run_eval,
|
|
)
|
|
|
|
|
|
def main():
|
|
"""Run base model evaluation."""
|
|
parser = argparse.ArgumentParser(description="Evaluate base model")
|
|
parser.add_argument("--model_name", type=str, required=True, help="Name/path of the model to evaluate")
|
|
parser.add_argument("--temperature", type=float, default=0, help="Sampling temperature")
|
|
args = parser.parse_args()
|
|
|
|
logger.info(f"🚀 Setting up model {args.model_name}...")
|
|
|
|
# Setup model
|
|
model, tokenizer = FastLanguageModel.from_pretrained(
|
|
model_name=args.model_name,
|
|
max_seq_length=4096 * 6,
|
|
load_in_4bit=True,
|
|
fast_inference=True,
|
|
gpu_memory_utilization=0.8,
|
|
)
|
|
|
|
# Setup sampling params
|
|
sampling_params = SamplingParams(
|
|
temperature=args.temperature,
|
|
top_p=0.95,
|
|
max_tokens=4096 * 6,
|
|
)
|
|
|
|
# Setup verifier with lower temperature
|
|
verifier_params = SamplingParams(
|
|
temperature=0.1, # Lower temperature for more consistent verification
|
|
top_p=0.95,
|
|
max_tokens=4096 * 6,
|
|
)
|
|
|
|
def generate_fn(inputs):
|
|
"""Generate responses for inputs."""
|
|
messages = [
|
|
{
|
|
"messages": [
|
|
{"role": "system", "content": get_system_prompt()},
|
|
{"role": "user", "content": build_user_prompt(input_text)},
|
|
]
|
|
}
|
|
for input_text in inputs
|
|
]
|
|
|
|
outputs = model.fast_generate(
|
|
[apply_chat_template(msg, tokenizer=tokenizer)["text"] for msg in messages],
|
|
sampling_params=sampling_params,
|
|
)
|
|
return outputs
|
|
|
|
def verifier_generate_fn(inputs):
|
|
"""Generate verification responses with lower temperature."""
|
|
messages = [
|
|
{
|
|
"messages": [
|
|
{"role": "system", "content": get_system_prompt()},
|
|
{"role": "user", "content": build_user_prompt(input_text)},
|
|
]
|
|
}
|
|
for input_text in inputs
|
|
]
|
|
|
|
return model.fast_generate(
|
|
[apply_chat_template(msg, tokenizer=tokenizer)["text"] for msg in messages],
|
|
sampling_params=verifier_params,
|
|
)
|
|
|
|
# Build verifier
|
|
verify_fn = build_reward_correctness_fn(verifier_generate_fn, tokenizer)
|
|
|
|
# Setup output directories
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
eval_log_dir = "eval_logs"
|
|
os.makedirs(eval_log_dir, exist_ok=True)
|
|
|
|
output_file = os.path.join(eval_log_dir, f"base_model_results_{timestamp}.txt")
|
|
debug_file = os.path.join(eval_log_dir, f"base_model_debug_{timestamp}.json")
|
|
|
|
logger.info("📝 Starting evaluation...")
|
|
logger.info(f"Results will be saved to: {output_file}")
|
|
logger.info(f"Debug info will be saved to: {debug_file}")
|
|
|
|
# Run evaluation using the agentic approach
|
|
full_chat_states = run_eval(
|
|
generate_fn=generate_fn,
|
|
verify_fn=verify_fn,
|
|
tokenizer=tokenizer,
|
|
output_file=output_file,
|
|
debug_file=debug_file,
|
|
max_generations=32,
|
|
max_new_tokens=4096 * 6,
|
|
)
|
|
|
|
logger.info("✨ Evaluation completed!")
|
|
logger.info(f"Check {output_file} for detailed results")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|