You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
7.4 KiB

import json
import math # Keep math import
import os
import re # Import re for parsing ID
from collections import defaultdict
from pathlib import Path
# import random # No longer needed
# SEED = 42 # No longer needed
# random.seed(SEED) # No longer needed
def transform_musique_data(input_path: str, output_path: str, sample_config: dict) -> None:
"""Transforms Musique data with deterministic stratified sampling using uniform selection from sorted lists.
Reads data, categorizes by detailed hop type, sorts categories by ID,
selects N samples uniformly spaced from each sorted category,
combines, sorts final list by ID, and writes to output.
Args:
input_path: Path to the input JSONL file.
output_path: Path to the output JSONL file.
sample_config: Dictionary specifying samples per detailed hop type (e.g., {"2hop": 400, "3hop1": 150, ...}).
"""
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
print(f"Reading all data from {input_path} for sampling...")
all_data = []
try:
with open(input_path, "r", encoding="utf-8") as infile:
for line_num, line in enumerate(infile, 1):
try:
data = json.loads(line)
if "id" in data:
all_data.append(data)
else:
print(f"Warning: Skipping line {line_num} due to missing 'id' field in {input_path}")
except json.JSONDecodeError:
print(f"Warning: Skipping invalid JSON in line {line_num} of {input_path}")
except FileNotFoundError:
print(f"Error: Input file not found at {input_path}")
return
except Exception as e:
print(f"Error reading file {input_path}: {e}")
return
print(f"Read {len(all_data)} total samples with IDs.")
# Detailed Categorization by hop type
categorized_data = defaultdict(list)
print("Categorizing data by detailed hop type (e.g., 3hop1, 4hop2)...")
for data in all_data:
q_id = data["id"]
match = re.match(r"^(2hop|3hop[12]|4hop[123])__", q_id)
if match:
detailed_hop_type = match.group(1)
categorized_data[detailed_hop_type].append(data)
# else: # Optional: log if an ID doesn't match expected pattern
# print(f"Warning: ID {q_id} does not match expected hop pattern.")
# Deterministic sampling using sorting and uniform index selection
final_sample_list = []
total_target = sum(sample_config.values())
print(f"Sampling deterministically via uniform selection from sorted lists to get {total_target} samples...")
# Check if all requested hop types exist in config
for hop_type in sample_config.keys():
if hop_type not in categorized_data:
print(f"Warning: Hop type '{hop_type}' requested in config but not found in data.")
for hop_type, target_count in sample_config.items():
available_samples = categorized_data.get(hop_type, [])
current_count = len(available_samples)
print(f" {hop_type}: Found {current_count} samples, need {target_count}.")
if current_count == 0:
continue
# Sort the list for this category by ID
available_samples.sort(key=lambda x: x["id"])
selected_samples_for_hop = []
if current_count < target_count:
print(f" Warning: Not enough samples for {hop_type}. Taking all {current_count} sorted samples.")
selected_samples_for_hop = available_samples
else:
# Select target_count indices spread uniformly across the available samples
print(f" Selecting {target_count} samples uniformly from {current_count}...")
# Calculate indices using integer interpretation of evenly spaced points
indices_to_take = [int(i * current_count / target_count) for i in range(target_count)]
# Ensure uniqueness in case of rounding issues with small numbers (though unlikely here)
indices_to_take = sorted(list(set(indices_to_take)))
# Adjust if rounding resulted in fewer than target_count unique indices
while len(indices_to_take) < target_count:
# This is a fallback, shouldn't happen if current_count >= target_count
# Add indices from the end if needed, avoiding duplicates
next_idx = indices_to_take[-1] + 1
if next_idx < current_count and next_idx not in indices_to_take:
indices_to_take.append(next_idx)
else: # Should not be reachable if logic is sound
break
# Select samples at the calculated indices
selected_samples_for_hop = [
available_samples[idx] for idx in indices_to_take[:target_count]
] # Ensure we take exactly target_count
final_sample_list.extend(selected_samples_for_hop)
print(f"Selected {len(final_sample_list)} samples in total.")
# Sort the final combined list by ID for consistent output order
print("Sorting the final combined sample list by ID...")
final_sample_list.sort(key=lambda x: x["id"])
# Process and write the selected samples
print(f"Processing and writing {len(final_sample_list)} selected samples to {output_path}...")
count = 0
try:
with open(output_path, "w", encoding="utf-8") as outfile:
for data in final_sample_list:
try:
supporting_paragraphs = [
p["paragraph_text"] for p in data.get("paragraphs", []) if p.get("is_supporting", False)
]
main_answer = data.get("answer", "")
aliases = data.get("answer_aliases", [])
all_answers = [main_answer] + (aliases if isinstance(aliases, list) else [])
valid_answers = [str(ans).strip() for ans in all_answers if ans and str(ans).strip()]
unique_valid_answers = list(set(valid_answers))
combined_answer_str = " OR ".join(unique_valid_answers)
output_data = {
"id": data.get("id"),
"question": data.get("question"),
"answer": combined_answer_str,
"supporting_paragraphs": supporting_paragraphs,
}
outfile.write(json.dumps(output_data) + "\n")
count += 1
except KeyError as e:
print(f"Skipping sample due to missing key {e}: {data.get('id')}")
print(f"Successfully processed and wrote {count} samples.")
except Exception as e:
print(f"An unexpected error occurred during writing: {e}")
if __name__ == "__main__":
# Define file paths
RAW_DIR = Path("data/raw")
PROCESSED_DIR = Path("data/processed")
# Define detailed sampling configuration
SAMPLING_CONFIG = {
"2hop": 400,
"3hop1": 150,
"3hop2": 150,
"4hop1": 100,
"4hop2": 100,
"4hop3": 100,
} # Total = 1000
transform_musique_data(
str(RAW_DIR / "musique_ans_v1.0_train.jsonl"), str(PROCESSED_DIR / "questions.jsonl"), SAMPLING_CONFIG
)
print(
"\nMusique JSONL transformation and detailed deterministic sampling (uniform selection from sorted) complete."
)
# Note: Dev/Test files are not processed by default with this sampling logic.