You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

161 lines
5.5 KiB

import requests
from typing import Any, Dict, List, Optional
from langchain.llms.base import LLM
from langchain.agents import initialize_agent, AgentType, Tool
from pydantic import Field
import os
from dotenv import load_dotenv
from datetime import datetime
import wikipedia
from asteval import Interpreter # For a safer calculator
import logging
from .tools import tools_registry
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
LM_STUDIO_API_URL = os.getenv("LM_STUDIO_API_URL", "http://192.168.0.104:1234/v1/chat/completions")
MODEL_NAME = os.getenv("LM_STUDIO_MODEL", "lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf")
CONTENT_TYPE = "application/json"
class LMStudioLLM(LLM):
"""
Custom LangChain LLM to interface with LM Studio API.
"""
api_url: str = Field(default=LM_STUDIO_API_URL, description="The API endpoint for LM Studio.")
model: str = Field(default=MODEL_NAME, description="The model path/name.")
temperature: float = Field(default=0.7, description="Sampling temperature.")
max_tokens: Optional[int] = Field(default=4096, description="Maximum number of tokens to generate.")
streaming: bool = Field(default=False, alias="stream", description="Whether to use streaming responses.")
class Config:
populate_by_name = True
@property
def _llm_type(self) -> str:
return "lmstudio"
@property
def identifying_params(self) -> Dict[str, Any]:
return {
"api_url": self.api_url,
"model": self.model,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"stream": self.streaming,
}
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""
Generate a response from the LM Studio model.
Args:
prompt (str): The input prompt.
stop (Optional[List[str]]): Stop sequences.
Returns:
str: The generated response.
"""
headers = {
"Content-Type": CONTENT_TYPE,
}
payload = {
"model": self.model,
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
"temperature": self.temperature,
"max_tokens": self.max_tokens if self.max_tokens is not None else -1,
"stream": self.streaming, # Uses alias 'stream'
}
logger.info(f"Payload: {payload}")
try:
response = requests.post(
self.api_url,
headers=headers,
json=payload,
timeout=60,
stream=self.streaming
)
response.raise_for_status()
logger.info(f"Response content: {response.text}")
except requests.RequestException as e:
logger.error(f"Failed to connect to LM Studio API: {e}")
raise RuntimeError(f"Failed to connect to LM Studio API: {e}")
if self.streaming:
return self._handle_stream(response)
else:
try:
response_json = response.json()
choices = response_json.get("choices", [])
if not choices:
raise ValueError("No choices found in the response.")
# Extract the first response's content
content = choices[0].get("message", {}).get("content", "")
return content.strip()
except (ValueError, KeyError) as e:
logger.error(f"Invalid response format: {e}")
raise RuntimeError(f"Invalid response format: {e}")
def _handle_stream(self, response: requests.Response) -> str:
"""
Process streaming responses from the LM Studio API.
Args:
response (requests.Response): The streaming response object.
Returns:
str: The concatenated content from the stream.
"""
content = ""
try:
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith("data: "):
data = decoded_line[6:]
if data == "[DONE]":
break
try:
json_data = requests.utils.json.loads(data)
choices = json_data.get("choices", [])
for chunk in choices:
delta = chunk.get("delta", {})
piece = delta.get("content", "")
content += piece
except requests.utils.json.JSONDecodeError:
continue
return content.strip()
except Exception as e:
logger.error(f"Error processing streaming response: {e}")
raise RuntimeError(f"Error processing streaming response: {e}")
def create_agent(tools: List[Tool]) -> Any:
"""
Initialize the LangChain agent with the provided tools.
Args:
tools (List[Tool]): List of LangChain Tool objects.
Returns:
Any: Initialized agent.
"""
llm = LMStudioLLM()
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=False,
handle_parsing_errors=True,
)
return agent