parent
55ff2d9045
commit
be7030c4cb
@ -0,0 +1,27 @@
|
||||
import os
|
||||
from dataset import examples
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
def can_launch_backend():
|
||||
# Проверяем размеры train_texts и train_labels
|
||||
count_text = len(examples.train_texts)
|
||||
count_lb = len(examples.train_labels)
|
||||
|
||||
if count_text != count_lb:
|
||||
print(f"Размерности данных не совпадают: {count_text} текстов и {count_lb} меток.")
|
||||
return False
|
||||
|
||||
print(f"Размерности совпадают: {count_text} текстов и {count_lb} меток.")
|
||||
|
||||
# Проверяем существование моделей и токенизаторов
|
||||
model_name = "DeepPavlov/rubert-base-cased"
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
except Exception as e:
|
||||
print(f"Ошибка при загрузке модели или токенизатора: {e}")
|
||||
return False
|
||||
|
||||
print("Модель и токенизатор успешно загружены.")
|
||||
return True
|
||||
|
@ -1,9 +1,255 @@
|
||||
import uvicorn
|
||||
import os
|
||||
import asyncio
|
||||
import threading
|
||||
from queue import Queue
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from dataset import examples
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
from evaluate import load
|
||||
from transformers import Trainer, TrainingArguments
|
||||
|
||||
count_text = len(examples.train_texts)
|
||||
count_lb = len(examples.train_labels)
|
||||
|
||||
print(f"{count_text} / {count_lb}")
|
||||
app = FastAPI()
|
||||
|
||||
print(examples.train_labels)
|
||||
model: Optional[AutoModelForSequenceClassification] = None
|
||||
tokenizer: Optional[AutoTokenizer] = None
|
||||
classes = examples.classes
|
||||
|
||||
# Флаги состояния
|
||||
training_in_progress = False
|
||||
training_complete = False
|
||||
|
||||
# Очереди для обработки запросов
|
||||
queue1 = Queue()
|
||||
queue2 = Queue()
|
||||
current_queue = queue1
|
||||
processing_queue = queue2
|
||||
|
||||
# Lock для переключения очередей
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
MODEL_DIR = "./trained_model"
|
||||
MODEL_NAME = "DeepPavlov/rubert-base-cased"
|
||||
|
||||
# Pydantic модель для запроса предсказания
|
||||
class PredictionRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
def prepare_datasets(train_texts, train_labels, val_texts, val_labels, tokenizer):
|
||||
"""Создаёт токенизированные датасеты для обучения и валидации."""
|
||||
train_dataset = Dataset.from_dict({"text": train_texts, "label": train_labels})
|
||||
val_dataset = Dataset.from_dict({"text": val_texts, "label": val_labels})
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
||||
|
||||
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
||||
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
||||
|
||||
train_dataset = train_dataset.remove_columns(["text"])
|
||||
val_dataset = val_dataset.remove_columns(["text"])
|
||||
|
||||
train_dataset = train_dataset.with_format("torch")
|
||||
val_dataset = val_dataset.with_format("torch")
|
||||
|
||||
return train_dataset, val_dataset
|
||||
|
||||
|
||||
def train_model(train_dataset, val_dataset, classes, model_name, output_dir="./results", num_epochs=3):
|
||||
"""Обучает модель и сохраняет её в указанной директории."""
|
||||
global training_in_progress, training_complete, model, tokenizer
|
||||
|
||||
training_in_progress = True
|
||||
training_complete = False
|
||||
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(classes))
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=output_dir,
|
||||
eval_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
per_device_train_batch_size=8,
|
||||
per_device_eval_batch_size=8,
|
||||
num_train_epochs=num_epochs,
|
||||
weight_decay=0.01,
|
||||
logging_dir="./logs",
|
||||
logging_steps=10,
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="accuracy"
|
||||
)
|
||||
|
||||
accuracy_metric = load("accuracy")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
logits, labels = eval_pred
|
||||
predictions = np.argmax(logits, axis=-1)
|
||||
return accuracy_metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=val_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model(output_dir)
|
||||
print(f"Модель сохранена в директории {output_dir}")
|
||||
|
||||
# Загрузка сохранённой модели
|
||||
model = AutoModelForSequenceClassification.from_pretrained(output_dir)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
training_complete = True
|
||||
except Exception as e:
|
||||
print(f"Ошибка при обучении модели: {e}")
|
||||
finally:
|
||||
training_in_progress = False
|
||||
|
||||
def can_launch_backend():
|
||||
"""Проверяет, чтобы размерности данных совпадали и модель существует."""
|
||||
count_text = len(examples.train_texts)
|
||||
count_lb = len(examples.train_labels)
|
||||
|
||||
if count_text != count_lb:
|
||||
print(f"Размерности данных не совпадают: {count_text} текстов и {count_lb} меток.")
|
||||
return False
|
||||
|
||||
if not os.path.exists(MODEL_DIR):
|
||||
print(f"Директория модели {MODEL_DIR} не существует.")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def load_model():
|
||||
"""Загружает сохранённую модель и токенизатор."""
|
||||
global model, tokenizer
|
||||
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||
print("Модель и токенизатор загружены.")
|
||||
|
||||
def prediction_worker():
|
||||
while True:
|
||||
request = processing_queue.get()
|
||||
if request is None:
|
||||
break # Завершение работы
|
||||
text, response_future = request
|
||||
try:
|
||||
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
||||
outputs = model(**inputs)
|
||||
predictions = torch.argmax(outputs.logits, dim=1).item()
|
||||
predicted_class = classes[predictions]
|
||||
response_future.set_result(predicted_class)
|
||||
except Exception as e:
|
||||
response_future.set_exception(e)
|
||||
|
||||
# Функция переключения очередей
|
||||
def flip_buffers():
|
||||
global current_queue, processing_queue
|
||||
with queue_lock:
|
||||
current_queue, processing_queue = processing_queue, current_queue
|
||||
|
||||
async def process_queue():
|
||||
while True:
|
||||
flip_buffers()
|
||||
while not processing_queue.empty():
|
||||
request = processing_queue.get()
|
||||
queue1.put(request) if current_queue == queue1 else queue2.put(request)
|
||||
await asyncio.sleep(0.1) # Интервал между переключениями
|
||||
|
||||
# Запуск воркера предсказаний
|
||||
prediction_thread = threading.Thread(target=prediction_worker, daemon=True)
|
||||
prediction_thread.start()
|
||||
|
||||
# Запуск фоновой задачи для обработки очереди
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
global training_in_progress, training_complete, model, tokenizer
|
||||
|
||||
# Проверка размерностей данных
|
||||
count_text = len(examples.train_texts)
|
||||
count_lb = len(examples.train_labels)
|
||||
print(f"Размерности данных: {count_text} текстов и {count_lb} меток.")
|
||||
|
||||
if count_text != count_lb:
|
||||
print("Размерности данных не совпадают. Backend не может быть запущен.")
|
||||
return
|
||||
|
||||
# Проверка наличия модели
|
||||
if not os.path.exists(MODEL_DIR):
|
||||
print("Модель не найдена. Начинается обучение модели.")
|
||||
tokenizer_temp = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||
train_dataset, val_dataset = prepare_datasets(
|
||||
examples.train_texts,
|
||||
examples.train_labels,
|
||||
examples.val_texts,
|
||||
examples.val_labels,
|
||||
tokenizer_temp
|
||||
)
|
||||
|
||||
training_thread = threading.Thread(
|
||||
target=train_model,
|
||||
args=(train_dataset, val_dataset, classes, MODEL_NAME, MODEL_DIR, 3),
|
||||
daemon=True
|
||||
)
|
||||
training_thread.start()
|
||||
else:
|
||||
print("Модель найдена. Загружается модель.")
|
||||
load_model()
|
||||
|
||||
# Запуск фоновой задачи для обработки очереди
|
||||
asyncio.create_task(process_queue())
|
||||
|
||||
@app.post("/predict")
|
||||
async def predict_endpoint(request: PredictionRequest):
|
||||
if training_in_progress:
|
||||
raise HTTPException(status_code=503, detail="Модель обучается. Пожалуйста, попробуйте позже.")
|
||||
if not training_complete and not model:
|
||||
raise HTTPException(status_code=503, detail="Модель не загружена. Пожалуйста, попробуйте позже.")
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
response_future = asyncio.Future()
|
||||
|
||||
# Добавление запроса в очередь
|
||||
with queue_lock:
|
||||
current_queue.put((request.text, response_future))
|
||||
|
||||
try:
|
||||
predicted_class = await asyncio.wait_for(response_future, timeout=10.0)
|
||||
return {"predicted_class": predicted_class}
|
||||
except asyncio.TimeoutError:
|
||||
raise HTTPException(status_code=504, detail="Время ожидания предсказания истекло.")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get("/status")
|
||||
async def status():
|
||||
if training_in_progress:
|
||||
return {"status": "Обучение продолжается"}
|
||||
elif training_complete:
|
||||
return {"status": "Модель готова"}
|
||||
elif os.path.exists(MODEL_DIR):
|
||||
return {"status": "Модель загружена"}
|
||||
else:
|
||||
return {"status": "Модель отсутствует"}
|
||||
|
||||
# Завершение работы
|
||||
@app.on_event("shutdown")
|
||||
def shutdown_event():
|
||||
# Остановить воркер предсказаний
|
||||
processing_queue.put(None)
|
||||
prediction_thread.join()
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||
|
@ -0,0 +1,81 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
||||
from datasets import Dataset
|
||||
from evaluate import load
|
||||
|
||||
def prepare_datasets(train_texts, train_labels, val_texts, val_labels, tokenizer):
|
||||
"""Создаёт токенизированные датасеты для обучения и валидации."""
|
||||
train_dataset = Dataset.from_dict({"text": train_texts, "label": train_labels})
|
||||
val_dataset = Dataset.from_dict({"text": val_texts, "label": val_labels})
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
||||
|
||||
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
||||
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
||||
|
||||
train_dataset = train_dataset.remove_columns(["text"])
|
||||
val_dataset = val_dataset.remove_columns(["text"])
|
||||
|
||||
train_dataset = train_dataset.with_format("torch")
|
||||
val_dataset = val_dataset.with_format("torch")
|
||||
|
||||
return train_dataset, val_dataset
|
||||
|
||||
def train_model(train_dataset, val_dataset, classes, model_name, output_dir="./results", num_epochs=3):
|
||||
"""Обучает модель и сохраняет её в указанной директории."""
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(classes))
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=output_dir,
|
||||
eval_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
per_device_train_batch_size=8,
|
||||
per_device_eval_batch_size=8,
|
||||
num_train_epochs=num_epochs,
|
||||
weight_decay=0.01,
|
||||
logging_dir="./logs",
|
||||
logging_steps=10,
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="accuracy"
|
||||
)
|
||||
|
||||
accuracy_metric = load("accuracy")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
logits, labels = eval_pred
|
||||
predictions = np.argmax(logits, axis=-1)
|
||||
return accuracy_metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=val_dataset,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model(output_dir)
|
||||
print(f"Модель сохранена в директории {output_dir}")
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def load_model_and_tokenizer(model_dir, model_name):
|
||||
"""Загружает сохранённую модель и токенизатор."""
|
||||
if not os.path.exists(model_dir):
|
||||
raise ValueError(f"Директория {model_dir} не существует.")
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
return model, tokenizer
|
||||
|
||||
def predict(model, tokenizer, text, classes):
|
||||
"""Делает предсказание для заданного текста."""
|
||||
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
||||
outputs = model(**inputs)
|
||||
predictions = torch.argmax(outputs.logits, dim=1).item()
|
||||
return classes[predictions]
|
Loading…
Reference in new issue