main
Artem-Darius Weber 1 month ago
commit f750a2cf7e

3
.gitattributes vendored

@ -0,0 +1,3 @@
*.bin filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text

File diff suppressed because it is too large Load Diff

@ -0,0 +1,9 @@
from dataset import examples
count_text = len(examples.train_texts)
count_lb = len(examples.train_labels)
print(f"{count_text} / {count_lb}")
print(examples.train_labels)

@ -0,0 +1,77 @@
from dataset import examples
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset
import numpy as np
from evaluate import load
classes = examples.classes
train_texts = examples.train_texts
train_labels = examples.train_labels
val_texts = examples.val_texts
val_labels = examples.val_labels
# ==============================================================================================================================================================================
train_dataset = Dataset.from_dict({"text": train_texts, "label": train_labels})
val_dataset = Dataset.from_dict({"text": val_texts, "label": val_labels})
model_name = "DeepPavlov/rubert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
train_dataset = train_dataset.map(tokenize_function, batched=True)
val_dataset = val_dataset.map(tokenize_function, batched=True)
train_dataset = train_dataset.remove_columns(["text"])
val_dataset = val_dataset.remove_columns(["text"])
train_dataset = train_dataset.with_format("torch")
val_dataset = val_dataset.with_format("torch")
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(classes))
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy"
)
accuracy_metric = load("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return accuracy_metric.compute(predictions=predictions, references=labels)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
trainer.save_model("./trained_model")
# Пример предсказания
test_text = "Когда починят светофор на перекрестке?"
inputs = tokenizer(test_text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=1).item()
predicted_class = classes[predictions]
print("Predicted class:", predicted_class)
Loading…
Cancel
Save