import pandas as pd
from langchain . chat_models import ChatOpenAI
from langchain . llms import OpenAI
from langchain . agents import initialize_agent , AgentType , AgentOutputParser
from typing import List , Union
from langchain . schema import AgentAction , AgentFinish , OutputParserException
from langchain . tools . base import StructuredTool
from typing import Optional
import requests
import telebot
from langchain . agents import create_json_agent , AgentExecutor
from langchain . agents . agent_toolkits import JsonToolkit
import os
OPENAI_API = " 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 "
os . environ [ " LANGCHAIN_TRACING_V2 " ] = " true "
os . environ [ " LANGCHAIN_ENDPOINT " ] = " https://api.smith.langchain.com "
os . environ [ " LANGCHAIN_API_KEY " ] = " ls__f7252ae2e7e4433d965ad37d94d63d6d "
project_name = " k-lab-weather "
os . environ [ " LANGCHAIN_PROJECT " ] = " project_name "
BOT_KEY = ' 6415742729:AAHVyDkHHF57ZsVd9gJjVtXjKE2M9CydzPk '
WELCOME_MSG = """ "
Привет ! ✨ Мы K - Lab , Команда , занимающаяся разработкой роботов 🤖 и машинным обучением и мы рады видеть тебя в нашей системе управления метеоданными !
Спроси что - нибудь у нашего бота 🙂
"""
# AGW_PORT = 8045
# AGW_HOST = 'localhost'
# AGW_URL = f"http://{AGW_HOST}:{AGW_PORT}/"
AGW_URL = f " https://gw.cg.k-lab.su/ "
bot = telebot . TeleBot ( BOT_KEY )
def fetch_get_sensors ( params = { } ) :
try :
response = requests . post ( AGW_URL + ' api/v1/sensors/get-with-params ' , json = params )
response . raise_for_status ( )
data = response . json ( )
return data
except requests . exceptions . RequestException as e :
print ( ' Error fetching data: ' , e )
return None
def fetch_get_agregator ( params = { } ) :
try :
response = requests . post ( AGW_URL + ' api/v1/agregator/get-with-params ' , json = params )
response . raise_for_status ( )
data = response . json ( )
return data
except requests . exceptions . RequestException as e :
print ( ' Error fetching data: ' , e )
return None
def fetch_get_weather_data ( params = { } ) :
try :
response = requests . get ( AGW_URL + ' api/v1/measures/get-for-ai ' )
response . raise_for_status ( )
data = response . json ( )
return data [ 0 ]
except requests . exceptions . RequestException as e :
print ( ' Error fetching data: ' , e )
return None
def get_sensors_insight ( ) - > str :
""" This tool provides data about the sensors (sensors) of the weather station. Data: lat, lng, height, name, agregator_uuid. Use it to answer questions related to this data. """
data = fetch_get_sensors ( )
return data
def get_agregators_insight ( ) - > str :
""" This tool provides data on adapters (repeaters that transmit data from sensors to the server) of the weather station. Data: lat, lng, height (altitude above sea level), name, country, city, region, street. Use it to answer questions related to this data. """
data = fetch_get_agregator ( )
return data
def get_weather_data_history_insight ( ) - > str :
""" This tool provides information about the history of changes in weather data readings. It will return an array of measurements including the following data: Sensor UUID, Agregator UUID, Type (Temperature, Humidity), Value, Time (date string). Use it to answer questions using this data. """
data = fetch_get_weather_data ( )
return data
sensors_insights_tool = StructuredTool . from_function ( get_sensors_insight )
agregators_insights_tool = StructuredTool . from_function ( get_agregators_insight )
weather_history_insights_tool = StructuredTool . from_function ( get_weather_data_history_insight )
chat = ChatOpenAI ( model_name = " gpt-3.5-turbo-16k " , temperature = 0.2 , openai_api_key = OPENAI_API )
tools = [ sensors_insights_tool , agregators_insights_tool , weather_history_insights_tool ]
class CustomOutputParser ( AgentOutputParser ) :
def parse ( self , llm_output : str ) - > Union [ AgentAction , AgentFinish ] :
# Check if agent should finish
if " Final Answer: " in llm_output :
final_answer = llm_output . split ( " Final Answer: " ) [ - 1 ] . strip ( )
print ( " final is - " + final_answer )
return AgentFinish (
return_values = { " output " : final_answer } ,
log = llm_output ,
)
# Parse out the action and action input
regex = r " Action \ s* \ d* \ s*:(.*?) \ nAction \ s* \ d* \ s*Input \ s* \ d* \ s*:[ \ s]*(.*) "
match = re . search ( regex , llm_output , re . DOTALL )
if not match :
raise ValueError ( f " Could not parse LLM output: ` { llm_output } ` " )
action = match . group ( 1 ) . strip ( )
action_input = match . group ( 2 )
# Return the action and action input
return AgentAction (
tool = action , tool_input = action_input . strip ( " " ) . strip ( ' " ' ) , log = llm_output
)
output_parser = CustomOutputParser ( )
agent_chain = initialize_agent (
tools ,
chat ,
max_iterations = 4 ,
agent = AgentType . STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION ,
verbose = True ,
output_parser = output_parser ,
project_name = project_name
)
# print(get_weather_data_history_insight())
@bot.message_handler ( commands = [ ' start ' , ' hello ' ] )
def send_welcome ( message ) :
bot . reply_to ( message , WELCOME_MSG )
@bot.message_handler ( func = lambda msg : True )
def echo_all ( message ) :
user_id = message . from_user . id
print ( message . text )
bot . reply_to ( message , " AI думает... 🤔 " )
llm = OpenAI ( model_name = " text-davinci-003 " , openai_api_key = OPENAI_API )
msg = llm ( " Translate the text to English: " + message . text )
request = " You are a system for monitoring data from weather systems. Solve the problem: " + msg + " . for this solution you can use any tool without me but you can run tool only one step. "
result = agent_chain ( request )
if ( result ) :
final_answer = result [ ' output ' ]
msg = llm ( " Переведи на красивый русский язык: " + final_answer )
print ( " AGENT_FINAL: " + final_answer )
print ( " DAVINCHI_FINAL: " + msg )
bot . reply_to ( message , str ( msg ) )
bot . infinity_polling ( )