You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kempt-kinkajou-2023/cybergarden-sensor/lib/ReedSolomonModule/RS-FEC.h

852 lines
28 KiB

#ifndef POLY_H
#define POLY_H
#include <stdint.h>
#include <string.h>
#if !defined DEBUG && !defined __CC_ARM
#include <assert.h>
#else
#define assert(dummy)
#endif
namespace RS {
struct Poly {
Poly()
: length(0), _memory(NULL) {}
Poly(uint8_t id, uint16_t offset, uint8_t size) \
: length(0), _id(id), _size(size), _offset(offset), _memory(NULL) {}
/* @brief Append number at the end of polynomial
* @param num - number to append
* @return false if polynomial can't be stretched */
inline bool Append(uint8_t num) {
assert(length+1 < _size);
ptr()[length++] = num;
return true;
}
/* @brief Polynomial initialization */
inline void Init(uint8_t id, uint16_t offset, uint8_t size, uint8_t** memory_ptr) {
this->_id = id;
this->_offset = offset;
this->_size = size;
this->length = 0;
this->_memory = memory_ptr;
}
/* @brief Polynomial memory zeroing */
inline void Reset() {
memset((void*)ptr(), 0, this->_size);
}
/* @brief Copy polynomial to memory
* @param src - source byte-sequence
* @param size - size of polynomial
* @param offset - write offset */
inline void Set(const uint8_t* src, uint8_t len, uint8_t offset = 0) {
assert(src && len <= this->_size-offset);
memcpy(ptr()+offset, src, len * sizeof(uint8_t));
length = len + offset;
}
#define poly_max(a, b) ((a > b) ? (a) : (b))
inline void Copy(const Poly* src) {
length = poly_max(length, src->length);
Set(src->ptr(), length);
}
inline uint8_t& at(uint8_t i) const {
assert(i < _size);
return ptr()[i];
}
inline uint8_t id() const {
return _id;
}
inline uint8_t size() const {
return _size;
}
// Returns pointer to memory of this polynomial
inline uint8_t* ptr() const {
assert(_memory && *_memory);
return (*_memory) + _offset;
}
uint8_t length;
protected:
uint8_t _id;
uint8_t _size; // Size of reserved memory for this polynomial
uint16_t _offset; // Offset in memory
uint8_t** _memory; // Pointer to pointer to memory
};
}
#endif // POLY_H
#ifndef GF_H
#define GF_H
#include <stdint.h>
#include <string.h>
#if !defined DEBUG && !defined __CC_ARM
#include <assert.h>
#else
#define assert(dummy)
#endif
namespace RS {
namespace gf {
/* GF tables pre-calculated for 0x11d primitive polynomial */
const uint8_t exp[512] = {
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, 0x4c,
0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, 0x8f, 0x3, 0x6, 0xc, 0x18, 0x30, 0x60, 0xc0, 0x9d,
0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, 0x46,
0x8c, 0x5, 0xa, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1, 0x5f,
0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0xf, 0x1e, 0x3c, 0x78, 0xf0, 0xfd,
0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, 0xd9,
0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0xd, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, 0x81,
0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc, 0x85,
0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, 0xa8,
0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, 0xe6,
0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, 0xe3,
0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41, 0x82,
0x19, 0x32, 0x64, 0xc8, 0x8d, 0x7, 0xe, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, 0x51,
0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x9, 0x12,
0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0xb, 0x16, 0x2c,
0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x1, 0x2,
0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, 0x4c, 0x98,
0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, 0x8f, 0x3, 0x6, 0xc, 0x18, 0x30, 0x60, 0xc0, 0x9d, 0x27,
0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, 0x46, 0x8c,
0x5, 0xa, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1, 0x5f, 0xbe,
0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0xf, 0x1e, 0x3c, 0x78, 0xf0, 0xfd, 0xe7,
0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, 0xd9, 0xaf,
0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0xd, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, 0x81, 0x1f,
0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc, 0x85, 0x17,
0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, 0xa8, 0x4d,
0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, 0xe6, 0xd1,
0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, 0xe3, 0xdb,
0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41, 0x82, 0x19,
0x32, 0x64, 0xc8, 0x8d, 0x7, 0xe, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, 0x51, 0xa2,
0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x9, 0x12, 0x24,
0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0xb, 0x16, 0x2c, 0x58,
0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x1, 0x2
};
const uint8_t log[256] = {
0x0, 0x0, 0x1, 0x19, 0x2, 0x32, 0x1a, 0xc6, 0x3, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, 0x4,
0x64, 0xe0, 0xe, 0x34, 0x8d, 0xef, 0x81, 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x8, 0x4c, 0x71, 0x5,
0x8a, 0x65, 0x2f, 0xe1, 0x24, 0xf, 0x21, 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, 0x1d,
0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, 0xc9, 0x9a, 0x9, 0x78, 0x4d, 0xe4, 0x72, 0xa6, 0x6,
0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, 0x36,
0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, 0x1e,
0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, 0xca,
0x5e, 0x9b, 0x9f, 0xa, 0x15, 0x79, 0x2b, 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57, 0x7,
0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0xd, 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, 0xe3,
0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, 0x37,
0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, 0xf2,
0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2, 0x1f,
0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, 0xc4, 0x17, 0x49, 0xec, 0x7f, 0xc, 0x6f, 0xf6, 0x6c,
0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, 0xcb,
0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, 0xb, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, 0x4f,
0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf
};
/* ################################
* # OPERATIONS OVER GALUA FIELDS #
* ################################ */
/* @brief Addition in Galua Fields
* @param x - left operand
* @param y - right operand
* @return x + y */
inline uint8_t add(uint8_t x, uint8_t y) {
return x^y;
}
/* ##### GF substraction ###### */
/* @brief Substraction in Galua Fields
* @param x - left operand
* @param y - right operand
* @return x - y */
inline uint8_t sub(uint8_t x, uint8_t y) {
return x^y;
}
/* @brief Multiplication in Galua Fields
* @param x - left operand
* @param y - rifht operand
* @return x * y */
inline uint8_t mul(uint16_t x, uint16_t y){
if (x == 0 || y == 0)
return 0;
return exp[log[x] + log[y]];
}
/* @brief Division in Galua Fields
* @param x - dividend
* @param y - divisor
* @return x / y */
inline uint8_t div(uint8_t x, uint8_t y){
assert(y != 0);
if(x == 0) return 0;
return exp[(log[x] + 255 - log[y]) % 255];
}
/* @brief X in power Y w
* @param x - operand
* @param power - power
* @return x^power */
inline uint8_t pow(uint8_t x, intmax_t power){
intmax_t i = log[x];
i *= power;
i %= 255;
if(i < 0) i = i + 255;
return exp[i];
}
/* @brief Inversion in Galua Fields
* @param x - number
* @return inversion of x */
inline uint8_t inverse(uint8_t x){
return exp[255 - log[x]]; /* == div(1, x); */
}
/* ##########################
* # POLYNOMIALS OPERATIONS #
* ########################## */
/* @brief Multiplication polynomial by scalar
* @param &p - source polynomial
* @param &newp - destination polynomial
* @param x - scalar */
inline void
poly_scale(const Poly *p, Poly *newp, uint16_t x) {
newp->length = p->length;
for(uint16_t i = 0; i < p->length; i++){
newp->at(i) = mul(p->at(i), x);
}
}
/* @brief Addition of two polynomials
* @param &p - right operand polynomial
* @param &q - left operand polynomial
* @param &newp - destination polynomial */
inline void
poly_add(const Poly *p, const Poly *q, Poly *newp) {
newp->length = poly_max(p->length, q->length);
memset(newp->ptr(), 0, newp->length * sizeof(uint8_t));
for(uint8_t i = 0; i < p->length; i++){
newp->at(i + newp->length - p->length) = p->at(i);
}
for(uint8_t i = 0; i < q->length; i++){
newp->at(i + newp->length - q->length) ^= q->at(i);
}
}
/* @brief Multiplication of two polynomials
* @param &p - right operand polynomial
* @param &q - left operand polynomial
* @param &newp - destination polynomial */
inline void
poly_mul(const Poly *p, const Poly *q, Poly *newp) {
newp->length = p->length + q->length - 1;
memset(newp->ptr(), 0, newp->length * sizeof(uint8_t));
/* Compute the polynomial multiplication (just like the outer product of two vectors,
* we multiply each coefficients of p with all coefficients of q) */
for(uint8_t j = 0; j < q->length; j++){
for(uint8_t i = 0; i < p->length; i++){
newp->at(i+j) ^= mul(p->at(i), q->at(j)); /* == r[i + j] = gf_add(r[i+j], gf_mul(p[i], q[j])) */
}
}
}
/* @brief Division of two polynomials
* @param &p - right operand polynomial
* @param &q - left operand polynomial
* @param &newp - destination polynomial */
inline void
poly_div(const Poly *p, const Poly *q, Poly *newp) {
if(p->ptr() != newp->ptr()) {
memcpy(newp->ptr(), p->ptr(), p->length*sizeof(uint8_t));
}
newp->length = p->length;
uint8_t coef;
for(int i = 0; i < (p->length-(q->length-1)); i++){
coef = newp->at(i);
if(coef != 0){
for(uint8_t j = 1; j < q->length; j++){
if(q->at(j) != 0)
newp->at(i+j) ^= mul(q->at(j), coef);
}
}
}
size_t sep = p->length-(q->length-1);
memmove(newp->ptr(), newp->ptr()+sep, (newp->length-sep) * sizeof(uint8_t));
newp->length = newp->length-sep;
}
/* @brief Evaluation of polynomial in x
* @param &p - polynomial to evaluate
* @param x - evaluation point */
inline int8_t
poly_eval(const Poly *p, uint16_t x) {
uint8_t y = p->at(0);
for(uint8_t i = 1; i < p->length; i++){
y = mul(y, x) ^ p->at(i);
}
return y;
}
} /* end of gf namespace */
}
#endif // GF_H
#ifndef RS_HPP
#define RS_HPP
#include <string.h>
#include <stdint.h>
#if !defined DEBUG && !defined __CC_ARM
#include <assert.h>
#else
#define assert(dummy)
#endif
namespace RS {
#define MSG_CNT 3 // message-length polynomials count
#define POLY_CNT 14 // (ecc_length*2)-length polynomialc count
template <const uint8_t msg_length, // Message length without correction code
const uint8_t ecc_length> // Length of correction code
class ReedSolomon {
public:
ReedSolomon() {
const uint8_t enc_len = msg_length + ecc_length;
const uint8_t poly_len = ecc_length * 2;
uint8_t** memptr = &memory;
uint16_t offset = 0;
/* Initialize first six polys manually cause their amount depends on template parameters */
polynoms[0].Init(ID_MSG_IN, offset, enc_len, memptr);
offset += enc_len;
polynoms[1].Init(ID_MSG_OUT, offset, enc_len, memptr);
offset += enc_len;
for(uint8_t i = ID_GENERATOR; i < ID_MSG_E; i++) {
polynoms[i].Init(i, offset, poly_len, memptr);
offset += poly_len;
}
polynoms[5].Init(ID_MSG_E, offset, enc_len, memptr);
offset += enc_len;
for(uint8_t i = ID_TPOLY3; i < ID_ERR_EVAL+2; i++) {
polynoms[i].Init(i, offset, poly_len, memptr);
offset += poly_len;
}
}
~ReedSolomon() {
// Dummy destructor, gcc-generated one crashes programm
memory = NULL;
}
/* @brief Message block encoding
* @param *src - input message buffer (msg_lenth size)
* @param *dst - output buffer for ecc (ecc_length size at least) */
void EncodeBlock(const void* src, void* dst) {
assert(msg_length + ecc_length < 256);
/* Generator cache, it dosn't change for one template parameters */
static uint8_t generator_cache[ecc_length+1] = {0};
static bool generator_cached = false;
/* Allocating memory on stack for polynomials storage */
uint8_t stack_memory[MSG_CNT * msg_length + POLY_CNT * ecc_length * 2];
this->memory = stack_memory;
const uint8_t* src_ptr = (const uint8_t*) src;
uint8_t* dst_ptr = (uint8_t*) dst;
Poly *msg_in = &polynoms[ID_MSG_IN];
Poly *msg_out = &polynoms[ID_MSG_OUT];
Poly *gen = &polynoms[ID_GENERATOR];
// Weird shit, but without reseting msg_in it simply doesn't work
msg_in->Reset();
msg_out->Reset();
// Using cached generator or generating new one
if(generator_cached) {
gen->Set(generator_cache, sizeof(generator_cache));
} else {
GeneratorPoly();
memcpy(generator_cache, gen->ptr(), gen->length);
generator_cached = true;
}
// Copying input message to internal polynomial
msg_in->Set(src_ptr, msg_length);
msg_out->Set(src_ptr, msg_length);
msg_out->length = msg_in->length + ecc_length;
// Here all the magic happens
uint8_t coef = 0; // cache
for(uint8_t i = 0; i < msg_length; i++){
coef = msg_out->at(i);
if(coef != 0){
for(uint32_t j = 1; j < gen->length; j++){
msg_out->at(i+j) ^= gf::mul(gen->at(j), coef);
}
}
}
// Copying ECC to the output buffer
memcpy(dst_ptr, msg_out->ptr()+msg_length, ecc_length * sizeof(uint8_t));
}
/* @brief Message encoding
* @param *src - input message buffer (msg_lenth size)
* @param *dst - output buffer (msg_length + ecc_length size at least) */
void Encode(const void* src, void* dst) {
uint8_t* dst_ptr = (uint8_t*) dst;
// Copying message to the output buffer
memcpy(dst_ptr, src, msg_length * sizeof(uint8_t));
// Calling EncodeBlock to write ecc to out[ut buffer
EncodeBlock(src, dst_ptr+msg_length);
}
/* @brief Message block decoding
* @param *src - encoded message buffer (msg_length size)
* @param *ecc - ecc buffer (ecc_length size)
* @param *msg_out - output buffer (msg_length size at least)
* @param *erase_pos - known errors positions
* @param erase_count - count of known errors
* @return RESULT_SUCCESS if successfull, error code otherwise */
int DecodeBlock(const void* src, const void* ecc, void* dst, uint8_t* erase_pos = NULL, size_t erase_count = 0) {
assert(msg_length + ecc_length < 256);
const uint8_t *src_ptr = (const uint8_t*) src;
const uint8_t *ecc_ptr = (const uint8_t*) ecc;
uint8_t *dst_ptr = (uint8_t*) dst;
const uint8_t src_len = msg_length + ecc_length;
const uint8_t dst_len = msg_length;
bool ok;
/* Allocation memory on stack */
uint8_t stack_memory[MSG_CNT * msg_length + POLY_CNT * ecc_length * 2];
this->memory = stack_memory;
Poly *msg_in = &polynoms[ID_MSG_IN];
Poly *msg_out = &polynoms[ID_MSG_OUT];
Poly *epos = &polynoms[ID_ERASURES];
// Copying message to polynomials memory
msg_in->Set(src_ptr, msg_length);
msg_in->Set(ecc_ptr, ecc_length, msg_length);
msg_out->Copy(msg_in);
// Copying known errors to polynomial
if(erase_pos == NULL) {
epos->length = 0;
} else {
epos->Set(erase_pos, erase_count);
for(uint8_t i = 0; i < epos->length; i++){
msg_in->at(epos->at(i)) = 0;
}
}
// Too many errors
if(epos->length > ecc_length) return 1;
Poly *synd = &polynoms[ID_SYNDROMES];
Poly *eloc = &polynoms[ID_ERRORS_LOC];
Poly *reloc = &polynoms[ID_TPOLY1];
Poly *err = &polynoms[ID_ERRORS];
Poly *forney = &polynoms[ID_FORNEY];
// Calculating syndrome
CalcSyndromes(msg_in);
// Checking for errors
bool has_errors = false;
for(uint8_t i = 0; i < synd->length; i++) {
if(synd->at(i) != 0) {
has_errors = true;
break;
}
}
// Going to exit if no errors
if(!has_errors) goto return_corrected_msg;
CalcForneySyndromes(synd, epos, src_len);
FindErrorLocator(forney, NULL, epos->length);
// Reversing syndrome
// TODO optimize through special Poly flag
reloc->length = eloc->length;
for(int8_t i = eloc->length-1, j = 0; i >= 0; i--, j++){
reloc->at(j) = eloc->at(i);
}
// Fing errors
ok = FindErrors(reloc, src_len);
if(!ok) return 1;
// Error happened while finding errors (so helpfull :D)
if(err->length == 0) return 1;
/* Adding found errors with known */
for(uint8_t i = 0; i < err->length; i++) {
epos->Append(err->at(i));
}
// Correcting errors
CorrectErrata(synd, epos, msg_in);
return_corrected_msg:
// Wrighting corrected message to output buffer
msg_out->length = dst_len;
memcpy(dst_ptr, msg_out->ptr(), msg_out->length * sizeof(uint8_t));
return 0;
}
/* @brief Message block decoding
* @param *src - encoded message buffer (msg_length + ecc_length size)
* @param *msg_out - output buffer (msg_length size at least)
* @param *erase_pos - known errors positions
* @param erase_count - count of known errors
* @return RESULT_SUCCESS if successfull, error code otherwise */
int Decode(const void* src, void* dst, uint8_t* erase_pos = NULL, size_t erase_count = 0) {
const uint8_t *src_ptr = (const uint8_t*) src;
const uint8_t *ecc_ptr = src_ptr + msg_length;
return DecodeBlock(src, ecc_ptr, dst, erase_pos, erase_count);
}
#ifndef DEBUG
private:
#endif
enum POLY_ID {
ID_MSG_IN = 0,
ID_MSG_OUT,
ID_GENERATOR, // 3
ID_TPOLY1, // T for Temporary
ID_TPOLY2,
ID_MSG_E, // 5
ID_TPOLY3, // 6
ID_TPOLY4,
ID_SYNDROMES,
ID_FORNEY,
ID_ERASURES_LOC,
ID_ERRORS_LOC,
ID_ERASURES,
ID_ERRORS,
ID_COEF_POS,
ID_ERR_EVAL
};
// Pointer for polynomials memory on stack
uint8_t* memory;
Poly polynoms[MSG_CNT + POLY_CNT];
void GeneratorPoly() {
Poly *gen = polynoms + ID_GENERATOR;
gen->at(0) = 1;
gen->length = 1;
Poly *mulp = polynoms + ID_TPOLY1;
Poly *temp = polynoms + ID_TPOLY2;
mulp->length = 2;
for(int8_t i = 0; i < ecc_length; i++){
mulp->at(0) = 1;
mulp->at(1) = gf::pow(2, i);
gf::poly_mul(gen, mulp, temp);
gen->Copy(temp);
}
}
void CalcSyndromes(const Poly *msg) {
Poly *synd = &polynoms[ID_SYNDROMES];
synd->length = ecc_length+1;
synd->at(0) = 0;
for(uint8_t i = 1; i < ecc_length+1; i++){
synd->at(i) = gf::poly_eval(msg, gf::pow(2, i-1));
}
}
void FindErrataLocator(const Poly *epos) {
Poly *errata_loc = &polynoms[ID_ERASURES_LOC];
Poly *mulp = &polynoms[ID_TPOLY1];
Poly *addp = &polynoms[ID_TPOLY2];
Poly *apol = &polynoms[ID_TPOLY3];
Poly *temp = &polynoms[ID_TPOLY4];
errata_loc->length = 1;
errata_loc->at(0) = 1;
mulp->length = 1;
addp->length = 2;
for(uint8_t i = 0; i < epos->length; i++){
mulp->at(0) = 1;
addp->at(0) = gf::pow(2, epos->at(i));
addp->at(1) = 0;
gf::poly_add(mulp, addp, apol);
gf::poly_mul(errata_loc, apol, temp);
errata_loc->Copy(temp);
}
}
void FindErrorEvaluator(const Poly *synd, const Poly *errata_loc, Poly *dst, uint8_t ecclen) {
Poly *mulp = &polynoms[ID_TPOLY1];
gf::poly_mul(synd, errata_loc, mulp);
Poly *divisor = &polynoms[ID_TPOLY2];
divisor->length = ecclen+2;
divisor->Reset();
divisor->at(0) = 1;
gf::poly_div(mulp, divisor, dst);
}
void CorrectErrata(const Poly *synd, const Poly *err_pos, const Poly *msg_in) {
Poly *c_pos = &polynoms[ID_COEF_POS];
Poly *corrected = &polynoms[ID_MSG_OUT];
c_pos->length = err_pos->length;
for(uint8_t i = 0; i < err_pos->length; i++)
c_pos->at(i) = msg_in->length - 1 - err_pos->at(i);
/* uses t_poly 1, 2, 3, 4 */
FindErrataLocator(c_pos);
Poly *errata_loc = &polynoms[ID_ERASURES_LOC];
/* reversing syndromes */
Poly *rsynd = &polynoms[ID_TPOLY3];
rsynd->length = synd->length;
for(int8_t i = synd->length-1, j = 0; i >= 0; i--, j++) {
rsynd->at(j) = synd->at(i);
}
/* getting reversed error evaluator polynomial */
Poly *re_eval = &polynoms[ID_TPOLY4];
/* uses T_POLY 1, 2 */
FindErrorEvaluator(rsynd, errata_loc, re_eval, errata_loc->length-1);
/* reversing it back */
Poly *e_eval = &polynoms[ID_ERR_EVAL];
e_eval->length = re_eval->length;
for(int8_t i = re_eval->length-1, j = 0; i >= 0; i--, j++) {
e_eval->at(j) = re_eval->at(i);
}
Poly *X = &polynoms[ID_TPOLY1]; /* this will store errors positions */
X->length = 0;
int16_t l;
for(uint8_t i = 0; i < c_pos->length; i++){
l = 255 - c_pos->at(i);
X->Append(gf::pow(2, -l));
}
/* Magnitude polynomial
Shit just got real */
Poly *E = &polynoms[ID_MSG_E];
E->Reset();
E->length = msg_in->length;
uint8_t Xi_inv;
Poly *err_loc_prime_temp = &polynoms[ID_TPOLY2];
uint8_t err_loc_prime;
uint8_t y;
for(uint8_t i = 0; i < X->length; i++){
Xi_inv = gf::inverse(X->at(i));
err_loc_prime_temp->length = 0;
for(uint8_t j = 0; j < X->length; j++){
if(j != i){
err_loc_prime_temp->Append(gf::sub(1, gf::mul(Xi_inv, X->at(j))));
}
}
err_loc_prime = 1;
for(uint8_t j = 0; j < err_loc_prime_temp->length; j++){
err_loc_prime = gf::mul(err_loc_prime, err_loc_prime_temp->at(j));
}
y = gf::poly_eval(re_eval, Xi_inv);
y = gf::mul(gf::pow(X->at(i), 1), y);
E->at(err_pos->at(i)) = gf::div(y, err_loc_prime);
}
gf::poly_add(msg_in, E, corrected);
}
bool FindErrorLocator(const Poly *synd, Poly *erase_loc = NULL, size_t erase_count = 0) {
Poly *error_loc = &polynoms[ID_ERRORS_LOC];
Poly *err_loc = &polynoms[ID_TPOLY1];
Poly *old_loc = &polynoms[ID_TPOLY2];
Poly *temp = &polynoms[ID_TPOLY3];
Poly *temp2 = &polynoms[ID_TPOLY4];
if(erase_loc != NULL) {
err_loc->Copy(erase_loc);
old_loc->Copy(erase_loc);
} else {
err_loc->length = 1;
old_loc->length = 1;
err_loc->at(0) = 1;
old_loc->at(0) = 1;
}
uint8_t synd_shift = 0;
if(synd->length > ecc_length) {
synd_shift = synd->length - ecc_length;
}
uint8_t K = 0;
uint8_t delta = 0;
uint8_t index;
for(uint8_t i = 0; i < ecc_length - erase_count; i++){
if(erase_loc != NULL)
K = erase_count + i + synd_shift;
else
K = i + synd_shift;
delta = synd->at(K);
for(uint8_t j = 1; j < err_loc->length; j++) {
index = err_loc->length - j - 1;
delta ^= gf::mul(err_loc->at(index), synd->at(K-j));
}
old_loc->Append(0);
if(delta != 0) {
if(old_loc->length > err_loc->length) {
gf::poly_scale(old_loc, temp, delta);
gf::poly_scale(err_loc, old_loc, gf::inverse(delta));
err_loc->Copy(temp);
}
gf::poly_scale(old_loc, temp, delta);
gf::poly_add(err_loc, temp, temp2);
err_loc->Copy(temp2);
}
}
uint32_t shift = 0;
while(err_loc->length && err_loc->at(shift) == 0) shift++;
uint32_t errs = err_loc->length - shift - 1;
if(((errs - erase_count) * 2 + erase_count) > ecc_length){
return false; /* Error count is greater then we can fix! */
}
memcpy(error_loc->ptr(), err_loc->ptr() + shift, (err_loc->length - shift) * sizeof(uint8_t));
error_loc->length = (err_loc->length - shift);
return true;
}
bool FindErrors(const Poly *error_loc, size_t msg_in_size) {
Poly *err = &polynoms[ID_ERRORS];
uint8_t errs = error_loc->length - 1;
err->length = 0;
for(uint8_t i = 0; i < msg_in_size; i++) {
if(gf::poly_eval(error_loc, gf::pow(2, i)) == 0) {
err->Append(msg_in_size - 1 - i);
}
}
/* Sanity check:
* the number of err/errata positions found
* should be exactly the same as the length of the errata locator polynomial */
if(err->length != errs)
/* couldn't find error locations */
return false;
return true;
}
void CalcForneySyndromes(const Poly *synd, const Poly *erasures_pos, size_t msg_in_size) {
Poly *erase_pos_reversed = &polynoms[ID_TPOLY1];
Poly *forney_synd = &polynoms[ID_FORNEY];
erase_pos_reversed->length = 0;
for(uint8_t i = 0; i < erasures_pos->length; i++){
erase_pos_reversed->Append(msg_in_size - 1 - erasures_pos->at(i));
}
forney_synd->Reset();
forney_synd->Set(synd->ptr()+1, synd->length-1);
uint8_t x;
for(uint8_t i = 0; i < erasures_pos->length; i++) {
x = gf::pow(2, erase_pos_reversed->at(i));
for(int8_t j = 0; j < forney_synd->length - 1; j++){
forney_synd->at(j) = gf::mul(forney_synd->at(j), x) ^ forney_synd->at(j+1);
}
}
}
};
}
#endif // RS_HPP
using namespace std;