|
|
|
import asyncio
|
|
|
|
import copy
|
|
|
|
import os
|
|
|
|
from livekit.agents import AutoSubscribe, JobContext, WorkerOptions, cli
|
|
|
|
from livekit.agents.transcription import STTSegmentsForwarder
|
|
|
|
from livekit.agents.llm import ChatContext, ChatMessage
|
|
|
|
from livekit import rtc
|
|
|
|
from livekit.agents import stt, transcription
|
|
|
|
from livekit.agents.voice_assistant import VoiceAssistant
|
|
|
|
from livekit.plugins import deepgram, openai, silero, elevenlabs
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
from .text_processor import _01_synthesize_assistant_reply
|
|
|
|
from .video_processor import RemoteVideoProcessor
|
|
|
|
import logging
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# Define the path to the log file
|
|
|
|
LOG_FILE_PATH = 'worker.txt'
|
|
|
|
|
|
|
|
def log_message(message: str):
|
|
|
|
"""Append a message to the log file with a timestamp."""
|
|
|
|
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
with open(LOG_FILE_PATH, 'a') as log_file:
|
|
|
|
log_file.write(f"{timestamp} - {message}\n")
|
|
|
|
|
|
|
|
start_message = """Hi! You can hold the white circle below to speak to me.
|
|
|
|
|
|
|
|
Try asking what I can do."""
|
|
|
|
|
|
|
|
|
|
|
|
async def _forward_transcription(
|
|
|
|
stt_stream: stt.SpeechStream,
|
|
|
|
stt_forwarder: transcription.STTSegmentsForwarder,
|
|
|
|
):
|
|
|
|
"""Forward the transcription to the client and log the transcript in the console"""
|
|
|
|
async for ev in stt_stream:
|
|
|
|
stt_forwarder.update(ev)
|
|
|
|
if ev.type == stt.SpeechEventType.INTERIM_TRANSCRIPT:
|
|
|
|
print(ev.alternatives[0].text, end="")
|
|
|
|
elif ev.type == stt.SpeechEventType.FINAL_TRANSCRIPT:
|
|
|
|
print("\n")
|
|
|
|
print(" -> ", ev.alternatives[0].text)
|
|
|
|
|
|
|
|
# This function is the entrypoint for the agent.
|
|
|
|
async def entrypoint(ctx: JobContext):
|
|
|
|
# Create an initial chat context with a system prompt
|
|
|
|
initial_ctx = ChatContext().append(
|
|
|
|
role="system",
|
|
|
|
text=(
|
|
|
|
"" # Open Interpreter handles this.
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Connect to the LiveKit room
|
|
|
|
await ctx.connect()
|
|
|
|
|
|
|
|
# Create a black background with a white circle
|
|
|
|
width, height = 640, 480
|
|
|
|
image_np = np.zeros((height, width, 4), dtype=np.uint8)
|
|
|
|
|
|
|
|
# Create a white circle
|
|
|
|
center = (width // 2, height // 2)
|
|
|
|
radius = 50
|
|
|
|
y, x = np.ogrid[:height, :width]
|
|
|
|
mask = ((x - center[0])**2 + (y - center[1])**2) <= radius**2
|
|
|
|
image_np[mask] = [255, 255, 255, 255] # White color with full opacity
|
|
|
|
|
|
|
|
source = rtc.VideoSource(width, height)
|
|
|
|
track = rtc.LocalVideoTrack.create_video_track("static_image", source)
|
|
|
|
|
|
|
|
options = rtc.TrackPublishOptions()
|
|
|
|
options.source = rtc.TrackSource.SOURCE_CAMERA
|
|
|
|
publication = await ctx.room.local_participant.publish_track(track, options)
|
|
|
|
|
|
|
|
# Function to continuously publish the static image
|
|
|
|
async def publish_static_image():
|
|
|
|
while True:
|
|
|
|
frame = rtc.VideoFrame(width, height, rtc.VideoBufferType.RGBA, image_np.tobytes())
|
|
|
|
source.capture_frame(frame)
|
|
|
|
await asyncio.sleep(1/30) # Publish at 30 fps
|
|
|
|
|
|
|
|
# Start publishing the static image
|
|
|
|
asyncio.create_task(publish_static_image())
|
|
|
|
|
|
|
|
# VoiceAssistant is a class that creates a full conversational AI agent.
|
|
|
|
# See https://github.com/livekit/agents/blob/main/livekit-agents/livekit/agents/voice_assistant/assistant.py
|
|
|
|
# for details on how it works.
|
|
|
|
|
|
|
|
interpreter_server_host = os.getenv('INTERPRETER_SERVER_HOST', 'localhost')
|
|
|
|
interpreter_server_port = os.getenv('INTERPRETER_SERVER_PORT', '8000')
|
|
|
|
base_url = f"http://{interpreter_server_host}:{interpreter_server_port}/openai"
|
|
|
|
|
|
|
|
# For debugging
|
|
|
|
# base_url = "http://127.0.0.1:8000/openai"
|
|
|
|
|
|
|
|
open_interpreter = openai.LLM(
|
|
|
|
model="open-interpreter", base_url=base_url, api_key="x"
|
|
|
|
)
|
|
|
|
|
|
|
|
tts_provider = os.getenv('01_TTS', '').lower()
|
|
|
|
stt_provider = os.getenv('01_STT', '').lower()
|
|
|
|
|
|
|
|
# Add plugins here
|
|
|
|
if tts_provider == 'openai':
|
|
|
|
tts = openai.TTS()
|
|
|
|
elif tts_provider == 'elevenlabs':
|
|
|
|
tts = elevenlabs.TTS()
|
|
|
|
elif tts_provider == 'cartesia':
|
|
|
|
pass # import plugin, TODO support this
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unsupported TTS provider: {tts_provider}. Please set 01_TTS environment variable to 'openai' or 'elevenlabs'.")
|
|
|
|
|
|
|
|
if stt_provider == 'deepgram':
|
|
|
|
stt = deepgram.STT()
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unsupported STT provider: {stt_provider}. Please set 01_STT environment variable to 'deepgram'.")
|
|
|
|
|
|
|
|
assistant = VoiceAssistant(
|
|
|
|
vad=silero.VAD.load(), # Voice Activity Detection
|
|
|
|
stt=stt, # Speech-to-Text
|
|
|
|
llm=open_interpreter, # Language Model
|
|
|
|
tts=tts, # Text-to-Speech
|
|
|
|
chat_ctx=initial_ctx, # Chat history context
|
|
|
|
will_synthesize_assistant_reply=_01_synthesize_assistant_reply(ctx.room.local_participant),
|
|
|
|
)
|
|
|
|
|
|
|
|
chat = rtc.ChatManager(ctx.room)
|
|
|
|
|
|
|
|
async def _answer_from_text(text: str):
|
|
|
|
chat_ctx = copy.deepcopy(assistant._chat_ctx)
|
|
|
|
chat_ctx.messages.append(ChatMessage(role="user", content=text))
|
|
|
|
|
|
|
|
stream = open_interpreter.chat(chat_ctx=chat_ctx)
|
|
|
|
await assistant.say(stream)
|
|
|
|
|
|
|
|
@chat.on("message_received")
|
|
|
|
def on_chat_received(msg: rtc.ChatMessage):
|
|
|
|
if not msg.message:
|
|
|
|
return
|
|
|
|
asyncio.create_task(_answer_from_text(msg.message))
|
|
|
|
|
|
|
|
# Start the voice assistant with the LiveKit room
|
|
|
|
assistant.start(ctx.room)
|
|
|
|
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
|
|
|
|
# Greets the user with an initial message
|
|
|
|
await assistant.say(start_message,
|
|
|
|
allow_interruptions=True)
|
|
|
|
|
|
|
|
tasks = []
|
|
|
|
|
|
|
|
async def transcribe_track(participant: rtc.RemoteParticipant, track: rtc.Track):
|
|
|
|
audio_stream = rtc.AudioStream(track)
|
|
|
|
stt_forwarder = STTSegmentsForwarder(
|
|
|
|
room=ctx.room, participant=participant, track=track
|
|
|
|
)
|
|
|
|
stt_stream = stt.stream()
|
|
|
|
stt_task = asyncio.create_task(
|
|
|
|
_forward_transcription(stt_stream, stt_forwarder)
|
|
|
|
)
|
|
|
|
tasks.append(stt_task)
|
|
|
|
|
|
|
|
async for ev in audio_stream:
|
|
|
|
stt_stream.push_frame(ev.frame)
|
|
|
|
|
|
|
|
@ctx.room.on("track_subscribed")
|
|
|
|
def on_track_subscribed(
|
|
|
|
track: rtc.Track,
|
|
|
|
publication: rtc.TrackPublication,
|
|
|
|
participant: rtc.RemoteParticipant,
|
|
|
|
):
|
|
|
|
log_message(f"Track subscribed: {track.kind}")
|
|
|
|
|
|
|
|
if track.kind == rtc.TrackKind.KIND_AUDIO:
|
|
|
|
tasks.append(asyncio.create_task(transcribe_track(participant, track)))
|
|
|
|
|
|
|
|
if track.kind == rtc.TrackKind.KIND_VIDEO:
|
|
|
|
remote_video_stream = rtc.VideoStream(track=track)
|
|
|
|
processor = RemoteVideoProcessor(video_stream=remote_video_stream, job_ctx=ctx)
|
|
|
|
|
|
|
|
asyncio.create_task(processor.process_frames())
|
|
|
|
|
|
|
|
|
|
|
|
def main(livekit_url):
|
|
|
|
# Workers have to be run as CLIs right now.
|
|
|
|
# So we need to simualte running "[this file] dev"
|
|
|
|
|
|
|
|
# Modify sys.argv to set the path to this file as the first argument
|
|
|
|
# and 'dev' as the second argument
|
|
|
|
sys.argv = [str(__file__), 'dev']
|
|
|
|
|
|
|
|
# Initialize the worker with the entrypoint
|
|
|
|
cli.run_app(
|
|
|
|
WorkerOptions(entrypoint_fnc=entrypoint, api_key="devkey", api_secret="secret", ws_url=livekit_url)
|
|
|
|
)
|