add basic interrupt logic

pull/314/head
Ben Xu 2 weeks ago
parent 84e05db366
commit 095b704da4

@ -0,0 +1,157 @@
from typing import Any, Dict
import json
import base64
import traceback
import io
from PIL import Image as PIL_Image
from openai import OpenAI
from livekit.agents.llm import ChatContext
from livekit import rtc
from livekit.agents.pipeline import VoicePipelineAgent
from livekit.agents.llm.chat_context import ChatContext
from source.server.livekit.logger import log_message
# Add these constants after the existing ones
INSTRUCTIONS_PROMPT = """Given the conversation context and the current video frame, evaluate if any instructions have been violated.
Rate the severity of violation from 0-10, where 10 is most severe.
Instructions to check:
1. Ensure that the screenshot is NOT YOUTUBE or other video content
Respond in the following JSON format:
{
"violation_detected": boolean,
"severity_rating": number,
"violation_summary": string,
"recommendations": string
}
"""
# Add this function to handle safety check callbacks
async def handle_instruction_check(
assistant: VoicePipelineAgent,
video_frame: rtc.VideoFrame,
):
"""Handle safety check callback from video processor"""
log_message("Starting instruction check process...")
try:
log_message("Calling check_instruction_violation...")
result = await check_instruction_violation(
chat_ctx=assistant.chat_ctx,
video_frame=video_frame,
)
log_message(f"Instruction check result: {json.dumps(result, indent=2)}")
if result["violation_detected"] and result["severity_rating"] >= 7:
log_message(f"Violation detected with severity {result['severity_rating']}, triggering assistant response")
# Append violation to chat context
violation_text = f"Safety violation detected: {result['violation_summary']}\nRecommendations: {result['recommendations']}"
assistant.chat_ctx.append(
role="user",
text=violation_text
)
log_message(f"Added violation to chat context: {violation_text}")
# Trigger assistant response
response = f"I noticed that {result['violation_summary']}. {result['recommendations']}"
log_message(f"Triggering assistant response: {response}")
# TODO: instead of saying the predetermined response, we'll trigger an assistant response here
# we can append the current video frame that triggered the violation to the chat context
stream = assistant.llm.chat()
await assistant.say(stream)
else:
log_message("No significant violations detected or severity below threshold")
except Exception as e:
log_message(f"Error in handle_instruction_check: {str(e)}")
log_message(f"Error traceback: {traceback.format_exc()}")
# Add this function to handle safety check callbacks
async def check_instruction_violation(
chat_ctx: ChatContext,
video_frame: rtc.VideoFrame,
) -> Dict[str, Any]:
"""Make a call to GPT-4 Vision to check for instruction violations"""
log_message("Creating new context for instruction check...")
try:
client = OpenAI()
try:
# Get raw RGBA data
frame_data = video_frame.data.tobytes()
# Create PIL Image from RGBA data
image = PIL_Image.frombytes('RGBA', (video_frame.width, video_frame.height), frame_data)
# Convert RGBA to RGB
rgb_image = image.convert('RGB')
# Save as JPEG
buffer = io.BytesIO()
rgb_image.save(buffer, format='JPEG')
jpeg_bytes = buffer.getvalue()
log_message(f"Got frame data, size: {len(jpeg_bytes)} bytes")
base64_image = base64.b64encode(jpeg_bytes).decode("utf-8")
log_message("Successfully encoded frame to base64")
except Exception as e:
log_message(f"Error encoding frame: {str(e)}")
raise
# Get the response
log_message("Making call to LLM for instruction check...")
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
# append chat context to prompt without images -- we'll need to parse them out
{
"role": "user",
"content": [
{"type": "text", "text": INSTRUCTIONS_PROMPT},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}
],
max_tokens=300,
)
log_message(f"Raw LLM response: {response}")
except Exception as e:
log_message(f"Error making LLM call: {str(e)}")
raise
try:
# Parse the response content
result = json.loads(response.choices[0].message.content)
log_message(f"Successfully parsed LLM response: {json.dumps(result, indent=2)}")
return result
except Exception as e:
log_message(f"Error parsing LLM response: {str(e)}")
raise
except Exception as e:
log_message(f"Failed to process instruction check: {str(e)}")
log_message(f"Error traceback: {traceback.format_exc()}")
default_response = {
"violation_detected": False,
"severity_rating": 0,
"violation_summary": f"Error processing instruction check: {str(e)}",
"recommendations": "None"
}
log_message(f"Returning default response: {json.dumps(default_response, indent=2)}")
return default_response
Loading…
Cancel
Save