Merge remote-tracking branch 'zakiui/u/zabirauf/stt-py' into u/shivenmian/local

pull/11/head
Shiven Mian 12 months ago
commit 12df8bbfac

@ -0,0 +1 @@
WHISPER_MODEL_PATH=/path/to/ggml-tiny.en.bin

@ -0,0 +1,10 @@
# Generated by Cargo
# will have compiled files and executables
debug/
target/
# These are backup files generated by rustfmt
**/*.rs.bk
# MSVC Windows builds of rustc generate these, which store debugging information
*.pdb

File diff suppressed because it is too large Load Diff

@ -0,0 +1,14 @@
[package]
name = "whisper-rust"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
anyhow = "1.0.79"
clap = { version = "4.4.18", features = ["derive"] }
cpal = "0.15.2"
hound = "3.5.1"
whisper-rs = "0.10.0"
whisper-rs-sys = "0.8.0"

@ -0,0 +1,9 @@
# Setup
1. Install [Rust](https://www.rust-lang.org/tools/install) and Python dependencies `pip install -r requirements.txt`.
2. Go to **core/stt** and run `cargo build --release`.
3. Download GGML Whisper model from [Huggingface](https://huggingface.co/ggerganov/whisper.cpp).
4. In core, copy `.env.example` to `.env` and put the path to model.
5. Run `python core/i_endpoint.py` to start the server.
6. Run `python core/test_cli.py PATH_TO_FILE` to test sending audio to service and getting transcription back over websocket.

@ -0,0 +1,55 @@
from datetime import datetime
import os
import contextlib
import tempfile
import ffmpeg
import subprocess
def convert_mime_type_to_format(mime_type: str) -> str:
if mime_type == "audio/x-wav" or mime_type == "audio/wav":
return "wav"
if mime_type == "audio/webm":
return "webm"
return mime_type
@contextlib.contextmanager
def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str:
temp_dir = tempfile.gettempdir()
# Create a temporary file with the appropriate extension
input_ext = convert_mime_type_to_format(mime_type)
input_path = os.path.join(temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}")
with open(input_path, 'wb') as f:
f.write(audio)
# Export to wav
output_path = os.path.join(temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav")
ffmpeg.input(input_path).output(output_path, acodec='pcm_s16le', ac=1, ar='16k').run()
print(f"Temporary file path: {output_path}")
try:
yield output_path
finally:
os.remove(input_path)
os.remove(output_path)
def run_command(command):
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
return result.stdout, result.stderr
def get_transcription(audio_bytes: bytearray, mime_type):
with export_audio_to_wav_ffmpeg(audio_bytes, mime_type) as wav_file_path:
model_path = os.getenv("WHISPER_MODEL_PATH")
if not model_path:
raise EnvironmentError("WHISPER_MODEL_PATH environment variable is not set.")
output, error = run_command([
os.path.join(os.path.dirname(__file__), 'whisper-rust', 'target', 'release', 'whisper-rust'),
'--model-path', model_path,
'--file-path', wav_file_path
])
print("Exciting transcription result:", output)
return output

@ -0,0 +1,34 @@
mod transcribe;
use clap::Parser;
use std::path::PathBuf;
use transcribe::transcribe;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// This is the model for Whisper STT
#[arg(short, long, value_parser, required = true)]
model_path: PathBuf,
/// This is the wav audio file that will be converted from speech to text
#[arg(short, long, value_parser, required = true)]
file_path: Option<PathBuf>,
}
fn main() {
let args = Args::parse();
let file_path = match args.file_path {
Some(fp) => fp,
None => panic!("No file path provided")
};
let result = transcribe(&args.model_path, &file_path);
match result {
Ok(transcription) => print!("{}", transcription),
Err(e) => panic!("Error: {}", e),
}
}

@ -0,0 +1,64 @@
use whisper_rs::{FullParams, SamplingStrategy, WhisperContext, WhisperContextParameters};
use std::path::PathBuf;
/// Transcribes the given audio file using the whisper-rs library.
///
/// # Arguments
/// * `model_path` - Path to Whisper model file
/// * `file_path` - A string slice that holds the path to the audio file to be transcribed.
///
/// # Returns
///
/// A Result containing a String with the transcription if successful, or an error message if not.
pub fn transcribe(model_path: &PathBuf, file_path: &PathBuf) -> Result<String, String> {
let model_path_str = model_path.to_str().expect("Not valid model path");
// Load a context and model
let ctx = WhisperContext::new_with_params(
model_path_str, // Replace with the actual path to the model
WhisperContextParameters::default(),
)
.map_err(|_| "failed to load model")?;
// Create a state
let mut state = ctx.create_state().map_err(|_| "failed to create state")?;
// Create a params object
// Note that currently the only implemented strategy is Greedy, BeamSearch is a WIP
let mut params = FullParams::new(SamplingStrategy::Greedy { best_of: 1 });
// Edit parameters as needed
params.set_n_threads(1); // Set the number of threads to use
params.set_translate(true); // Enable translation
params.set_language(Some("en")); // Set the language to translate to English
// Disable printing to stdout
params.set_print_special(false);
params.set_print_progress(false);
params.set_print_realtime(false);
params.set_print_timestamps(false);
// Load the audio file
let audio_data = std::fs::read(file_path)
.map_err(|e| format!("failed to read audio file: {}", e))?
.chunks_exact(2)
.map(|chunk| i16::from_ne_bytes([chunk[0], chunk[1]]))
.collect::<Vec<i16>>();
// Convert the audio data to the required format (16KHz mono i16 samples)
let audio_data = whisper_rs::convert_integer_to_float_audio(&audio_data);
// Run the model
state.full(params, &audio_data[..]).map_err(|_| "failed to run model")?;
// Fetch the results
let num_segments = state.full_n_segments().map_err(|_| "failed to get number of segments")?;
let mut transcription = String::new();
for i in 0..num_segments {
let segment = state.full_get_segment_text(i).map_err(|_| "failed to get segment")?;
transcription.push_str(&segment);
transcription.push('\n');
}
Ok(transcription)
}

@ -0,0 +1,40 @@
import argparse
import asyncio
import websockets
import os
import json
# Define the function to send audio file in chunks
async def send_audio_in_chunks(file_path, chunk_size=4096):
async with websockets.connect("ws://localhost:8000/a") as websocket:
# Send the start command with mime type
await websocket.send(json.dumps({"action": "command", "state": "start", "mimeType": "audio/webm"}))
# Open the file in binary mode and send in chunks
with open(file_path, 'rb') as audio_file:
chunk = audio_file.read(chunk_size)
while chunk:
await websocket.send(chunk)
chunk = audio_file.read(chunk_size)
# Send the end command
await websocket.send(json.dumps({"action": "command", "state": "end"}))
# Receive a json message and then close the connection
message = await websocket.recv()
print("Received message:", json.loads(message))
await websocket.close()
# Parse command line arguments
parser = argparse.ArgumentParser(description="Send a webm audio file to the /a websocket endpoint and print the responses.")
parser.add_argument("file_path", help="The path to the webm audio file to send.")
args = parser.parse_args()
# Check if the file exists
if not os.path.isfile(args.file_path):
print(args.file_path)
print("Error: The file does not exist.")
exit(1)
# Run the asyncio event loop
asyncio.get_event_loop().run_until_complete(send_audio_in_chunks(args.file_path))
Loading…
Cancel
Save