Merge remote-tracking branch 'upstream/main' into u/shivenmian/user

pull/6/head
Shiven Mian 11 months ago
commit 9e5fe73fba

@ -0,0 +1,125 @@
"""
Exposes a POST endpoint called /computer. Things from there go into the queue.
Exposes a ws endpoint called /user. Things from there go into the queue. We also send things in the queue back (that are role: assistant)
In a while loop we watch the queue.
"""
import json
import time
import queue
import os
from threading import Thread
import uvicorn
import re
from fastapi import FastAPI
from threading import Thread
from starlette.websockets import WebSocket
from create_interpreter import create_interpreter
from stt import stt
from tts import tts
# Create interpreter
interpreter = create_interpreter()
script_dir = os.path.dirname(os.path.abspath(__file__))
conversation_history_path = os.path.join(script_dir, 'conversations', 'user.json')
# Create Queue objects
to_user = queue.Queue()
to_assistant = queue.Queue()
# This is so we only say() full sentences
accumulated_text = ""
def is_full_sentence(text):
return text.endswith(('.', '!', '?'))
def split_into_sentences(text):
return re.split(r'(?<=[.!?])\s+', text)
app = FastAPI()
@app.post("/computer")
async def read_computer(item: dict):
to_assistant.put(item)
@app.websocket("/user")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_json()
to_assistant.put(data)
if not to_user.empty():
message = to_user.get()
await websocket.send_json(message)
audio_chunks = []
def queue_listener():
while True:
# Check 10x a second for new messages
while to_assistant.empty():
time.sleep(0.1)
message = to_assistant.get()
# Hold the audio in a buffer. If it's ready (we got end flag, stt it)
if message["type"] == "audio":
if "content" in message:
audio_chunks.append(message)
if "end" in message:
text = stt(audio_chunks)
audio_chunks = []
message = {"role": "user", "type": "message", "content": text}
else:
continue
# Custom stop message will halt us
if message.get("content") and message.get("content").lower().strip(".,!") == "stop":
continue
# Load, append, and save conversation history
with open(conversation_history_path, 'r') as file:
messages = json.load(file)
messages.append(message)
with open(conversation_history_path, 'w') as file:
json.dump(messages, file)
accumulated_text = ""
for chunk in interpreter.chat(messages):
# Send it to the user
to_user.put(chunk)
# Speak full sentences out loud
accumulated_text += chunk["content"]
sentences = split_into_sentences(accumulated_text)
if is_full_sentence(sentences[-1]):
for sentence in sentences:
for audio_chunk in tts(sentence):
to_user.put(audio_chunk)
accumulated_text = ""
else:
for sentence in sentences[:-1]:
for audio_chunk in tts(sentence):
to_user.put(audio_chunk)
accumulated_text = sentences[-1]
if chunk["type"] == "message" and "content" in sentence:
sentence += chunk.get("content")
# If we have a new message, save our progress and go back to the top
if not to_assistant.empty():
with open(conversation_history_path, 'w') as file:
json.dump(interpreter.messages, file)
break
# Create a thread for the queue listener
queue_thread = Thread(target=queue_listener)
# Start the queue listener thread
queue_thread.start()
# Run the FastAPI app
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)

@ -0,0 +1,127 @@
from interpreter import interpreter
import os
import glob
import json
import requests
def create_interpreter():
### SYSTEM MESSAGE
# The system message is where most of the 01's behavior is configured.
# You can put code into the system message {{ in brackets like this }} which will be rendered just before the interpreter starts writing a message.
system_message = """
You are an executive assistant AI that helps the user manage their tasks. You can run Python code.
Store the user's tasks in a Python list called `tasks`.
---
The user's current task is: {{ tasks[0] if tasks else "No current tasks." }}
{{
if len(tasks) > 1:
print("The next task is: ", tasks[1])
}}
---
When the user completes the current task, you should remove it from the list and read the next item by running `tasks = tasks[1:]\ntasks[0]`. Then, tell the user what the next task is.
When the user tells you about a set of tasks, you should intelligently order tasks, batch similar tasks, and break down large tasks into smaller tasks (for this, you should consult the user and get their permission to break it down). Your goal is to manage the task list as intelligently as possible, to make the user as efficient and non-overwhelmed as possible. They will require a lot of encouragement, support, and kindness. Don't say too much about what's ahead of them just try to focus them on each step at a time.
After starting a task, you should check in with the user around the estimated completion time to see if the task is completed. Use the `schedule(datetime, message)` function, which has already been imported.
To do this, schedule a reminder based on estimated completion time using the function `schedule(datetime_object, "Your message here.")`, WHICH HAS ALREADY BEEN IMPORTED. YOU DON'T NEED TO IMPORT THE `schedule` FUNCTION. IT IS AVALIABLE. You'll recieve the message at `datetime_object`.
You guide the user through the list one task at a time, convincing them to move forward, giving a pep talk if need be. Your job is essentially to answer "what should I (the user) be doing right now?" for every moment of the day.
Remember: You can run Python code. Be very concise. Ensure that you actually run code every time! THIS IS IMPORTANT. You NEED to write code. **Help the user by being very concise in your answers.** Do not break down tasks excessively, just into simple, few minute steps. Don't assume the user lives their life in a certain way— pick very general tasks if you're breaking a task down.
""".strip()
interpreter.custom_instructions = system_message
### LLM SETTINGS
# Local settings
# interpreter.llm.model = "local"
# interpreter.llm.api_base = "https://localhost:8080/v1" # Llamafile default
# interpreter.llm.max_tokens = 1000
# interpreter.llm.context_window = 3000
# Hosted settings
interpreter.llm.api_key = os.getenv('OPENAI_API_KEY')
interpreter.llm.model = "gpt-4"
interpreter.auto_run = True
interpreter.force_task_completion = True
### MISC SETTINGS
interpreter.offline = True
interpreter.id = 206 # Used to identify itself to other interpreters. This should be changed programatically so it's unique.
### RESET conversations/user.json
script_dir = os.path.dirname(os.path.abspath(__file__))
user_json_path = os.path.join(script_dir, 'conversations', 'user.json')
with open(user_json_path, 'w') as file:
json.dump([], file)
### CONNECT TO /run
class Python:
"""
This class contains all requirements for being a custom language in Open Interpreter:
- name (an attribute)
- run (a method)
- stop (a method)
- terminate (a method)
"""
# This is the name that will appear to the LLM.
name = "python"
def run(self, code):
"""Generator that yields a dictionary in LMC Format."""
# Prepare the data
data = {"language": "python", "code": code}
# Send the data to the /run endpoint
response = requests.post("http://localhost:8000/run", json=data, stream=True)
# Stream the response
for line in response.iter_lines():
if line: # filter out keep-alive new lines
yield json.loads(line)
def stop(self):
"""Stops the code."""
# Not needed here, because e2b.run_code isn't stateful.
pass
def terminate(self):
"""Terminates the entire process."""
# Not needed here, because e2b.run_code isn't stateful.
pass
interpreter.computer.languages = [Python]
### SKILLS
script_dir = os.path.dirname(os.path.abspath(__file__))
skills_dir = os.path.join(script_dir, 'skills')
for file in glob.glob(os.path.join(skills_dir, '*.py')):
with open(file, 'r') as f:
for chunk in interpreter.computer.run("python", f.read()):
print(chunk)
### RETURN INTERPRETER
return interpreter

@ -1,3 +1,7 @@
"""
Defines a function which takes a path to an audio file and turns it into text.
"""
from datetime import datetime
import os
import contextlib

@ -0,0 +1,6 @@
"""
Defines a function which takes text and returns a path to an audio file.
"""
def tts(text):
return path_to_audio

@ -1,4 +1,133 @@
"""
Watches the kernel. When it sees something that passes a filter,
it sends POST request with that to /computer.
"""
"""
import subprocess
import time
import requests
import platform
class Device:
def __init__(self, device_type, device_info):
self.device_type = device_type
self.device_info = device_info
def get_device_info(self):
info = f"Device Type: {self.device_type}\n"
for key, value in self.device_info.items():
info += f"{key}: {value}\n"
return info
def __eq__(self, other):
if isinstance(other, Device):
return self.device_type == other.device_type and self.device_info == other.device_info
return False
def get_connected_devices():
"""
Get all connected devices on macOS using system_profiler
"""
devices = []
usb_output = subprocess.check_output(['system_profiler', 'SPUSBDataType'])
network_output = subprocess.check_output(['system_profiler', 'SPNetworkDataType'])
usb_lines = usb_output.decode('utf-8').split('\n')
network_lines = network_output.decode('utf-8').split('\n')
device_info = {}
for line in usb_lines:
if 'Product ID:' in line or 'Serial Number:' in line or 'Manufacturer:' in line:
key, value = line.strip().split(':')
device_info[key.strip()] = value.strip()
if 'Manufacturer:' in line:
devices.append(Device('USB', device_info))
device_info = {}
for line in network_lines:
if 'Type:' in line or 'Hardware:' in line or 'BSD Device Name:' in line:
key, value = line.strip().split(':')
device_info[key.strip()] = value.strip()
if 'BSD Device Name:' in line:
devices.append(Device('Network', device_info))
device_info = {}
return devices
def run_kernel_watch_darwin():
prev_connected_devices = None
while True:
messages_to_send = []
connected_devices = get_connected_devices()
if prev_connected_devices is not None:
for device in connected_devices:
if device not in prev_connected_devices:
messages_to_send.append(f'New device connected: {device.get_device_info()}')
for device in prev_connected_devices:
if device not in connected_devices:
messages_to_send.append(f'Device disconnected: {device.get_device_info()}')
if messages_to_send:
requests.post('http://localhost:8000/computer', json = {'messages': messages_to_send})
prev_connected_devices = connected_devices
time.sleep(2)
def get_dmesg(after):
"""
Is this the way to do this?
"""
messages = []
with open('/var/log/dmesg', 'r') as file:
lines = file.readlines()
for line in lines:
timestamp = float(line.split(' ')[0].strip('[]'))
if timestamp > after:
messages.append(line)
return messages
def custom_filter(message):
# Check for {TO_INTERPRETER{ message here }TO_INTERPRETER} pattern
if '{TO_INTERPRETER{' in message and '}TO_INTERPRETER}' in message:
start = message.find('{TO_INTERPRETER{') + len('{TO_INTERPRETER{')
end = message.find('}TO_INTERPRETER}', start)
return message[start:end]
# Check for USB mention
elif 'USB' in message:
return message
# Check for network related keywords
elif any(keyword in message for keyword in ['network', 'IP', 'internet', 'LAN', 'WAN', 'router', 'switch']):
return message
else:
return None
def run_kernel_watch_linux():
last_timestamp = time.time()
while True:
messages = get_dmesg(after=last_timestamp)
last_timestamp = time.time()
messages_for_core = []
for message in messages:
if custom_filter(message):
messages_for_core.append(message)
if messages_for_core:
requests.post('http://localhost:8000/computer', json = {'messages': messages_for_core})
time.sleep(2)
if __name__ == "__main__":
current_platform = platform.system()
if current_platform == "Darwin":
run_kernel_watch_darwin()
elif current_platform == "Linux":
run_kernel_watch_linux()
else:
print("Unsupported platform. Exiting.")

@ -3,7 +3,26 @@ Exposes a SSE streaming server endpoint at /run, which recieves language and cod
and streams the output.
"""
import json
from interpreter import interpreter
import uvicorn
for chunk in interpreter.run(language, code, stream=True):
stream(chunk)
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
class Code(BaseModel):
language: str
code: str
app = FastAPI()
@app.post("/run")
async def run_code(code: Code):
def generator():
for chunk in interpreter.computer.run(code.language, code.code, stream=True):
yield json.dumps(chunk)
return StreamingResponse(generator())
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=9000)

@ -6,17 +6,15 @@ sudo apt-get update
sudo apt-get install redis-server
pip install -r requirements.txt
# START REDIS
redis-cli -h localhost -p 6379 rpush to_interface ""
redis-cli -h localhost -p 6379 rpush to_core ""
### COMPUTER
# START KERNEL WATCHER
### CORE
python computer/kernel_watcher.py &
# START KERNEL WATCHER
# START RUN ENDPOINT
python core/kernel_watcher.py &
python computer/run.py
# START SST AND TTS SERVICES
@ -28,18 +26,12 @@ python core/kernel_watcher.py &
# (disabled, we'll start with hosted services)
# python core/llm/start.py &
# START CORE
python core/start_core.py &
### INTERFACE
# START ASSISTANT
# START INTERFACE
python assistant/assistant.py &
python interface/interface.py &
### USER
# START DISPLAY
# START USER
# (this should be changed to run it in fullscreen / kiosk mode)
open interface/display.html
python user/user.py &
Loading…
Cancel
Save