class Stt: def __init__(self, config): pass def stt(self, audio_file_path): return stt(audio_file_path) from datetime import datetime import os import contextlib import tempfile import ffmpeg import subprocess import openai from openai import OpenAI client = OpenAI() def convert_mime_type_to_format(mime_type: str) -> str: if mime_type == "audio/x-wav" or mime_type == "audio/wav": return "wav" if mime_type == "audio/webm": return "webm" if mime_type == "audio/raw": return "dat" return mime_type @contextlib.contextmanager def export_audio_to_wav_ffmpeg(audio: bytearray, mime_type: str) -> str: temp_dir = tempfile.gettempdir() # Create a temporary file with the appropriate extension input_ext = convert_mime_type_to_format(mime_type) input_path = os.path.join( temp_dir, f"input_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.{input_ext}" ) with open(input_path, "wb") as f: f.write(audio) # Check if the input file exists assert os.path.exists(input_path), f"Input file does not exist: {input_path}" # Export to wav output_path = os.path.join( temp_dir, f"output_{datetime.now().strftime('%Y%m%d%H%M%S%f')}.wav" ) if mime_type == "audio/raw": ffmpeg.input( input_path, f="s16le", ar="16000", ac=1, ).output(output_path, loglevel="panic").run() else: ffmpeg.input(input_path).output( output_path, acodec="pcm_s16le", ac=1, ar="16k", loglevel="panic" ).run() try: yield output_path finally: os.remove(input_path) os.remove(output_path) def run_command(command): result = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) return result.stdout, result.stderr def get_transcription_file(wav_file_path: str): local_path = os.path.join(os.path.dirname(__file__), "local_service") whisper_rust_path = os.path.join( os.path.dirname(__file__), "whisper-rust", "target", "release" ) model_name = os.getenv("WHISPER_MODEL_NAME", "ggml-tiny.en.bin") output, error = run_command( [ os.path.join(whisper_rust_path, "whisper-rust"), "--model-path", os.path.join(local_path, model_name), "--file-path", wav_file_path, ] ) return output def get_transcription_bytes(audio_bytes: bytearray, mime_type): with export_audio_to_wav_ffmpeg(audio_bytes, mime_type) as wav_file_path: return get_transcription_file(wav_file_path) def stt_bytes(audio_bytes: bytearray, mime_type="audio/wav"): with export_audio_to_wav_ffmpeg(audio_bytes, mime_type) as wav_file_path: return stt_wav(wav_file_path) def stt_wav(wav_file_path: str): audio_file = open(wav_file_path, "rb") try: transcript = client.audio.transcriptions.create( model="whisper-1", file=audio_file, response_format="text" ) except openai.BadRequestError as e: print(f"openai.BadRequestError: {e}") return None return transcript def stt(input_data, mime_type="audio/wav"): if isinstance(input_data, str): return stt_wav(input_data) elif isinstance(input_data, bytearray): return stt_bytes(input_data, mime_type) else: raise ValueError( "Input data should be either a path to a wav file (str) or audio bytes (bytearray)" )