You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
01/software/source/server/livekit/worker.py

463 lines
19 KiB

import asyncio
import numpy as np
import sys
import os
import threading
from datetime import datetime
from typing import Literal, Awaitable
from livekit.agents import JobContext, WorkerOptions, cli, transcription
from livekit.agents.transcription import STTSegmentsForwarder
from livekit.agents.llm import ChatContext
from livekit import rtc
from livekit.agents.pipeline import VoicePipelineAgent
from livekit.plugins import deepgram, openai, silero, elevenlabs, cartesia
from livekit.agents.llm.chat_context import ChatContext, ChatImage, ChatMessage
from livekit.agents.llm import LLMStream
from livekit.agents.stt import SpeechStream
from source.server.livekit.video_processor import RemoteVideoProcessor
from source.server.livekit.anticipation import handle_instruction_check
from source.server.livekit.logger import log_message
from dotenv import load_dotenv
load_dotenv()
_room_lock = threading.Lock()
_connected_rooms = set()
START_MESSAGE = "Hi! You can hold the white circle below to speak to me. Try asking what I can do."
# This function is the entrypoint for the agent.
async def entrypoint(ctx: JobContext):
# Create an initial chat context with a system prompt
initial_chat_ctx = ChatContext().append(
role="system",
text=(
"Only take into context the user's image if their message is relevant or pertaining to the image. Otherwise just keep in context that the image is present but do not acknowledge or mention it in your response." # Open Interpreter handles this.
),
)
# Connect to the LiveKit room
await ctx.connect()
# Create chat manager
chat = rtc.ChatManager(ctx.room)
# Initialize RemoteVideoProcessor
remote_video_processor = None
############################################################
# publish agent image
############################################################
# Create a black background with a white circle
width, height = 640, 480
image_np = np.zeros((height, width, 4), dtype=np.uint8)
# Create a white circle
center = (width // 2, height // 2)
radius = 50
y, x = np.ogrid[:height, :width]
mask = ((x - center[0])**2 + (y - center[1])**2) <= radius**2
image_np[mask] = [255, 255, 255, 255] # White color with full opacity
source = rtc.VideoSource(width, height)
track = rtc.LocalVideoTrack.create_video_track("static_image", source)
options = rtc.TrackPublishOptions()
options.source = rtc.TrackSource.SOURCE_CAMERA
publication = await ctx.room.local_participant.publish_track(track, options)
# Function to continuously publish the static image
async def publish_static_image():
while True:
frame = rtc.VideoFrame(width, height, rtc.VideoBufferType.RGBA, image_np.tobytes())
source.capture_frame(frame)
await asyncio.sleep(1/30) # Publish at 30 fps
# Start publishing the static image
asyncio.create_task(publish_static_image())
############################################################
# initialize voice agent pipeline
############################################################
interpreter_server_host = os.getenv('INTERPRETER_SERVER_HOST', 'localhost')
interpreter_server_port = os.getenv('INTERPRETER_SERVER_PORT', '8000')
base_url = f"http://{interpreter_server_host}:{interpreter_server_port}/"
# For debugging
base_url = "http://127.0.0.1:9000/"
open_interpreter = openai.LLM(
model="open-interpreter", base_url=base_url, api_key="x"
)
tts_provider = os.getenv('01_TTS', '').lower()
stt_provider = os.getenv('01_STT', '').lower()
tts_provider = "elevenlabs"
stt_provider = "deepgram"
# Add plugins here
if tts_provider == 'openai':
tts = openai.TTS()
elif tts_provider == 'local':
tts = openai.TTS(base_url="http://localhost:8000/v1")
print("using local tts")
elif tts_provider == 'elevenlabs':
tts = elevenlabs.TTS()
print("using elevenlabs tts")
elif tts_provider == 'cartesia':
tts = cartesia.TTS()
else:
raise ValueError(f"Unsupported TTS provider: {tts_provider}. Please set 01_TTS environment variable to 'openai' or 'elevenlabs'.")
if stt_provider == 'deepgram':
stt = deepgram.STT()
elif stt_provider == 'local':
stt = openai.STT(base_url="http://localhost:8001/v1")
print("using local stt")
else:
raise ValueError(f"Unsupported STT provider: {stt_provider}. Please set 01_STT environment variable to 'deepgram'.")
############################################################
# initialize voice assistant states
############################################################
push_to_talk = False
current_message: ChatMessage = ChatMessage(role='user')
submitted_message: ChatMessage = ChatMessage(role='user')
video_muted = False
video_context = False
tasks = []
############################################################
# before_llm_cb
############################################################
def _before_llm_cb(
agent: VoicePipelineAgent,
chat_ctx: ChatContext
) -> Awaitable[LLMStream] | Literal[False]:
nonlocal push_to_talk
nonlocal remote_video_processor
nonlocal current_message
nonlocal submitted_message
log_message(f"[before_llm_cb] chat_ctx before we perform any processing: {chat_ctx}")
if push_to_talk:
last_message = chat_ctx.messages[-1]
if submitted_message and isinstance(last_message.content, str):
log_message(f"[before_llm_cb] submitted_message: {submitted_message}")
# Find where submitted_messages ends in last_message
submitted_end_idx = 0
while isinstance(submitted_message.content, str) and submitted_message.content[submitted_end_idx] == last_message.content[submitted_end_idx]:
submitted_end_idx += 1
if submitted_end_idx == len(submitted_message.content):
break
# Remove the submitted message from the accumulated messages
log_message(f"[before_llm_cb] submitted_end_idx: {submitted_end_idx}")
# Take messages after the submitted message
current_message = ChatMessage(role=last_message.role, content=last_message.content[submitted_end_idx:])
log_message(f"[before_llm_cb] current_message after removing submitted_message: {current_message}")
else:
current_message = ChatMessage(role=last_message.role, content=last_message.content)
log_message(f"[before_llm_cb] current_message after removing submitted_message: {current_message}")
# Continue without invoking LLM immediately
return False
else:
async def process_query():
log_message(f"[before_llm_cb] processing query in VAD with chat_ctx: {chat_ctx}")
if remote_video_processor and not video_muted:
video_frame = await remote_video_processor.get_current_frame()
if video_frame:
chat_ctx.append(role="user", images=[ChatImage(image=video_frame)])
else:
log_message("[before_llm_cb] No video frame available")
return agent.llm.chat(
chat_ctx=chat_ctx,
fnc_ctx=agent.fnc_ctx,
)
return process_query()
############################################################
# on_message_received helper
############################################################
async def _on_message_received(msg: str):
nonlocal push_to_talk
nonlocal remote_video_processor
nonlocal current_message
nonlocal submitted_message
if msg == "{COMPLETE}":
chat_ctx = assistant.chat_ctx
log_message(f"[on_message_received] copied chat_ctx: {chat_ctx}")
# append image if available
if remote_video_processor and not video_muted:
if remote_video_processor.get_video_context():
log_message("context is true")
log_message("retrieving timeline frame")
video_frame = await remote_video_processor.get_timeline_frame()
else:
log_message("context is false")
log_message("retrieving current frame")
video_frame = await remote_video_processor.get_current_frame()
if video_frame:
chat_ctx.append(role="user", images=[ChatImage(image=video_frame)])
log_message(f"[on_message_received] appended image: {video_frame} to chat_ctx: {chat_ctx}")
if isinstance(current_message.content, str):
chat_ctx.append(role=current_message.role, text=current_message.content)
# extend existing submitted_message content with the new message content
if submitted_message and isinstance(submitted_message.content, str):
submitted_message.content += current_message.content
else:
submitted_message = current_message
log_message(f"[on_message_received] appended message: {current_message.content}")
log_message(f"[on_message_received] submitted_message is now {submitted_message}")
log_message(f"[on_message_received] chat_ctx is now {chat_ctx}")
elif isinstance(current_message.content, ChatImage):
chat_ctx.append(role=current_message.role, images=[current_message.content])
log_message(f"[on_message_received] appended message: {current_message.content}")
log_message(f"[on_message_received] submitted_messages is now {submitted_message}")
log_message(f"[on_message_received] chat_ctx is now {chat_ctx}")
else:
log_message(f"[on_message_received] Unsupported message content type: {current_message}")
current_message = ChatMessage(role='user')
log_message(f"[on_message_received] current_message reset to {current_message}")
# Generate a response
stream = assistant.llm.chat(chat_ctx=chat_ctx)
await assistant.say(stream)
return
if msg == "{REQUIRE_START_ON}":
push_to_talk = True
return
if msg == "{REQUIRE_START_OFF}":
push_to_talk = False
return
# we copy chat_ctx here to handle the actual message content being sent to the LLM by the user
# _on_message_received is called once with the message request and then once with the {COMPLETE} message to trigger the actual LLM call
# so this copy is our default case where we just append the user's message to the chat_ctx
chat_ctx = assistant.chat_ctx
chat_ctx.append(role="user", text=msg)
log_message(f"[on_message_received] appended message: {msg} to chat_ctx: {chat_ctx}")
return
############################################################
# on_message_received callback
############################################################
@chat.on("message_received")
def on_chat_received(msg: rtc.ChatMessage):
log_message(f"Chat message received: {msg.message}")
if msg.message:
asyncio.create_task(_on_message_received(msg.message))
############################################################
# transcribe participant track
############################################################
async def _forward_transcription(
stt_stream: SpeechStream,
stt_forwarder: transcription.STTSegmentsForwarder,
):
"""Forward the transcription and log the transcript in the console"""
async for ev in stt_stream:
stt_forwarder.update(ev)
if ev.type == stt.SpeechEventType.INTERIM_TRANSCRIPT:
print(ev.alternatives[0].text, end="")
elif ev.type == stt.SpeechEventType.FINAL_TRANSCRIPT:
print("\n")
print(" -> ", ev.alternatives[0].text)
async def transcribe_track(participant: rtc.RemoteParticipant, track: rtc.Track):
audio_stream = rtc.AudioStream(track)
stt_forwarder = STTSegmentsForwarder(
room=ctx.room, participant=participant, track=track
)
stt_stream = stt.stream()
stt_task = asyncio.create_task(
_forward_transcription(stt_stream, stt_forwarder)
)
tasks.append(stt_task)
async for ev in audio_stream:
stt_stream.push_frame(ev.frame)
############################################################
# on_track_subscribed callback
############################################################
@ctx.room.on("track_subscribed")
def on_track_subscribed(
track: rtc.Track,
publication: rtc.TrackPublication,
participant: rtc.RemoteParticipant,
):
log_message(f"Track subscribed: {track.kind}")
if track.kind == rtc.TrackKind.KIND_AUDIO:
tasks.append(asyncio.create_task(transcribe_track(participant, track)))
if track.kind == rtc.TrackKind.KIND_VIDEO:
nonlocal remote_video_processor
remote_video_stream = rtc.VideoStream(track=track, format=rtc.VideoBufferType.RGBA)
remote_video_processor = RemoteVideoProcessor(video_stream=remote_video_stream, job_ctx=ctx)
log_message("remote video processor." + str(remote_video_processor))
# Register safety check callback
remote_video_processor.register_safety_check_callback(
lambda frame: handle_instruction_check(assistant, frame)
)
remote_video_processor.set_video_context(video_context)
log_message(f"set video context to {video_context} from queued video context")
asyncio.create_task(remote_video_processor.process_frames())
############################################################
# on track muted callback
############################################################
@ctx.room.on("track_muted")
def on_track_muted(participant: rtc.RemoteParticipant, publication: rtc.TrackPublication):
nonlocal video_muted
if publication.kind == rtc.TrackKind.KIND_VIDEO:
video_muted = True
log_message(f"Track muted: {publication.kind}")
############################################################
# on track unmuted callback
############################################################
@ctx.room.on("track_unmuted")
def on_track_unmuted(participant: rtc.RemoteParticipant, publication: rtc.TrackPublication):
nonlocal video_muted
if publication.kind == rtc.TrackKind.KIND_VIDEO:
video_muted = False
log_message(f"Track unmuted: {publication.kind}")
############################################################
# on data received callback
############################################################
async def _publish_clear_chat():
local_participant = ctx.room.local_participant
await local_participant.publish_data(payload="{CLEAR_CHAT}", topic="chat_context")
log_message("sent {CLEAR_CHAT} to chat_context for client to clear")
await assistant.say(START_MESSAGE)
@ctx.room.on("data_received")
def on_data_received(data: rtc.DataPacket):
nonlocal video_context
decoded_data = data.data.decode()
log_message(f"received data from {data.topic}: {decoded_data}")
if data.topic == "chat_context" and decoded_data == "{CLEAR_CHAT}":
assistant.chat_ctx.messages.clear()
assistant.chat_ctx.append(
role="system",
text=(
"Only take into context the user's image if their message is relevant or pertaining to the image. Otherwise just keep in context that the image is present but do not acknowledge or mention it in your response."
),
)
log_message(f"cleared chat_ctx")
log_message(f"chat_ctx is now {assistant.chat_ctx}")
asyncio.create_task(_publish_clear_chat())
if data.topic == "video_context" and decoded_data == "{VIDEO_CONTEXT_ON}":
if remote_video_processor:
remote_video_processor.set_video_context(True)
log_message("set video context to True")
else:
video_context = True
log_message("no remote video processor found, queued video context to True")
if data.topic == "video_context" and decoded_data == "{VIDEO_CONTEXT_OFF}":
if remote_video_processor:
remote_video_processor.set_video_context(False)
log_message("set video context to False")
else:
video_context = False
log_message("no remote video processor found, queued video context to False")
############################################################
# Start the voice assistant with the LiveKit room
############################################################
assistant = VoicePipelineAgent(
vad=silero.VAD.load(),
stt=stt,
llm=open_interpreter,
tts=tts,
chat_ctx=initial_chat_ctx,
before_llm_cb=_before_llm_cb,
)
assistant.start(ctx.room)
await asyncio.sleep(1)
# Greets the user with an initial message
await assistant.say(START_MESSAGE, allow_interruptions=True)
############################################################
# wait for the voice assistant to finish
############################################################
@assistant.on("agent_started_speaking")
def on_agent_started_speaking():
asyncio.create_task(ctx.room.local_participant.publish_data(payload="{AGENT_STARTED_SPEAKING}", topic="agent_state"))
log_message("Agent started speaking")
return
@assistant.on("agent_stopped_speaking")
def on_agent_stopped_speaking():
asyncio.create_task(ctx.room.local_participant.publish_data(payload="{AGENT_STOPPED_SPEAKING}", topic="agent_state"))
log_message("Agent stopped speaking")
return
def main(livekit_url: str):
# Workers have to be run as CLIs right now.
# So we need to simualte running "[this file] dev"
worker_start_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
log_message(f"=== INITIALIZING NEW WORKER AT {worker_start_time} ===")
print(f"=== INITIALIZING NEW WORKER AT {worker_start_time} ===")
# Modify sys.argv to set the path to this file as the first argument
# and 'dev' as the second argument
sys.argv = [str(__file__), 'start']
# Initialize the worker with the entrypoint
cli.run_app(
WorkerOptions(
entrypoint_fnc=entrypoint,
api_key="devkey",
api_secret="secret",
ws_url=livekit_url
)
)