You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
14 KiB
352 lines
14 KiB
import asyncio
|
|
import numpy as np
|
|
import sys
|
|
import os
|
|
from datetime import datetime
|
|
from typing import Literal, Awaitable
|
|
|
|
from livekit.agents import JobContext, WorkerOptions, cli
|
|
from livekit.agents.transcription import STTSegmentsForwarder
|
|
from livekit.agents.llm import ChatContext
|
|
from livekit import rtc
|
|
from livekit.agents.pipeline import VoicePipelineAgent
|
|
from livekit.plugins import deepgram, openai, silero, elevenlabs, cartesia
|
|
from livekit.agents.llm.chat_context import ChatContext, ChatImage, ChatMessage
|
|
from livekit.agents.llm import LLMStream
|
|
|
|
from source.server.livekit.video_processor import RemoteVideoProcessor
|
|
|
|
from source.server.livekit.transcriptions import _forward_transcription
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
# Define the path to the log file
|
|
LOG_FILE_PATH = 'worker.txt'
|
|
|
|
def log_message(message: str):
|
|
"""Append a message to the log file with a timestamp."""
|
|
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
|
with open(LOG_FILE_PATH, 'a') as log_file:
|
|
log_file.write(f"{timestamp} - {message}\n")
|
|
|
|
start_message = """Hi! You can hold the white circle below to speak to me.
|
|
|
|
Try asking what I can do."""
|
|
|
|
# This function is the entrypoint for the agent.
|
|
async def entrypoint(ctx: JobContext):
|
|
# Create an initial chat context with a system prompt
|
|
initial_chat_ctx = ChatContext().append(
|
|
role="system",
|
|
text=(
|
|
"Only take into context the user's image if their message is relevant or pertaining to the image. Otherwise just keep in context that the image is present but do not acknowledge or mention it in your response." # Open Interpreter handles this.
|
|
),
|
|
)
|
|
|
|
# Connect to the LiveKit room
|
|
await ctx.connect()
|
|
|
|
# Create chat manager
|
|
chat = rtc.ChatManager(ctx.room)
|
|
|
|
# Initialize RemoteVideoProcessor
|
|
remote_video_processor = None
|
|
|
|
############################################################
|
|
# publish agent image
|
|
############################################################
|
|
# Create a black background with a white circle
|
|
width, height = 640, 480
|
|
image_np = np.zeros((height, width, 4), dtype=np.uint8)
|
|
|
|
# Create a white circle
|
|
center = (width // 2, height // 2)
|
|
radius = 50
|
|
y, x = np.ogrid[:height, :width]
|
|
mask = ((x - center[0])**2 + (y - center[1])**2) <= radius**2
|
|
image_np[mask] = [255, 255, 255, 255] # White color with full opacity
|
|
|
|
source = rtc.VideoSource(width, height)
|
|
track = rtc.LocalVideoTrack.create_video_track("static_image", source)
|
|
|
|
options = rtc.TrackPublishOptions()
|
|
options.source = rtc.TrackSource.SOURCE_CAMERA
|
|
publication = await ctx.room.local_participant.publish_track(track, options)
|
|
|
|
# Function to continuously publish the static image
|
|
async def publish_static_image():
|
|
while True:
|
|
frame = rtc.VideoFrame(width, height, rtc.VideoBufferType.RGBA, image_np.tobytes())
|
|
source.capture_frame(frame)
|
|
await asyncio.sleep(1/30) # Publish at 30 fps
|
|
|
|
# Start publishing the static image
|
|
asyncio.create_task(publish_static_image())
|
|
|
|
############################################################
|
|
# initialize voice agent pipeline
|
|
############################################################
|
|
interpreter_server_host = os.getenv('INTERPRETER_SERVER_HOST', 'localhost')
|
|
interpreter_server_port = os.getenv('INTERPRETER_SERVER_PORT', '8000')
|
|
base_url = f"http://{interpreter_server_host}:{interpreter_server_port}/"
|
|
|
|
# For debugging
|
|
base_url = "http://127.0.0.1:8000/"
|
|
|
|
open_interpreter = openai.LLM(
|
|
model="open-interpreter", base_url=base_url, api_key="x"
|
|
)
|
|
|
|
tts_provider = os.getenv('01_TTS', '').lower()
|
|
stt_provider = os.getenv('01_STT', '').lower()
|
|
tts_provider='elevenlabs'
|
|
stt_provider='deepgram'
|
|
|
|
# Add plugins here
|
|
if tts_provider == 'openai':
|
|
tts = openai.TTS()
|
|
elif tts_provider == 'elevenlabs':
|
|
tts = elevenlabs.TTS()
|
|
elif tts_provider == 'cartesia':
|
|
tts = cartesia.TTS()
|
|
else:
|
|
raise ValueError(f"Unsupported TTS provider: {tts_provider}. Please set 01_TTS environment variable to 'openai' or 'elevenlabs'.")
|
|
|
|
if stt_provider == 'deepgram':
|
|
stt = deepgram.STT()
|
|
else:
|
|
raise ValueError(f"Unsupported STT provider: {stt_provider}. Please set 01_STT environment variable to 'deepgram'.")
|
|
|
|
############################################################
|
|
# initialize voice assistant states
|
|
############################################################
|
|
push_to_talk = True
|
|
current_message: ChatMessage = ChatMessage(role='user')
|
|
submitted_message: ChatMessage = ChatMessage(role='user')
|
|
video_muted = False
|
|
|
|
tasks = []
|
|
############################################################
|
|
# before_llm_cb
|
|
############################################################
|
|
def _before_llm_cb(
|
|
agent: VoicePipelineAgent,
|
|
chat_ctx: ChatContext
|
|
) -> Awaitable[LLMStream] | Literal[False]:
|
|
nonlocal push_to_talk
|
|
nonlocal remote_video_processor
|
|
nonlocal current_message
|
|
nonlocal submitted_message
|
|
log_message(f"[before_llm_cb] chat_ctx before we perform any processing: {chat_ctx}")
|
|
|
|
|
|
if push_to_talk:
|
|
last_message = chat_ctx.messages[-1]
|
|
|
|
if submitted_message and isinstance(last_message.content, str):
|
|
log_message(f"[before_llm_cb] submitted_message: {submitted_message}")
|
|
|
|
# Find where submitted_messages ends in last_message
|
|
submitted_end_idx = 0
|
|
while isinstance(submitted_message.content, str) and submitted_message.content[submitted_end_idx] == last_message.content[submitted_end_idx]:
|
|
submitted_end_idx += 1
|
|
if submitted_end_idx == len(submitted_message.content):
|
|
break
|
|
|
|
# Remove the submitted message from the accumulated messages
|
|
log_message(f"[before_llm_cb] submitted_end_idx: {submitted_end_idx}")
|
|
|
|
# Take messages after the submitted message
|
|
current_message = ChatMessage(role=last_message.role, content=last_message.content[submitted_end_idx:])
|
|
log_message(f"[before_llm_cb] current_message after removing submitted_message: {current_message}")
|
|
else:
|
|
current_message = ChatMessage(role=last_message.role, content=last_message.content)
|
|
log_message(f"[before_llm_cb] current_message after removing submitted_message: {current_message}")
|
|
|
|
# Continue without invoking LLM immediately
|
|
return False
|
|
|
|
else:
|
|
async def process_query():
|
|
if remote_video_processor and not video_muted:
|
|
video_frame = await remote_video_processor.get_current_frame()
|
|
if video_frame:
|
|
chat_ctx.append(role="user", images=[ChatImage(image=video_frame)])
|
|
else:
|
|
log_message("[before_llm_cb] No video frame available")
|
|
|
|
return agent.llm.chat(
|
|
chat_ctx=chat_ctx,
|
|
fnc_ctx=agent.fnc_ctx,
|
|
)
|
|
|
|
return process_query()
|
|
|
|
############################################################
|
|
# on_message_received implementation
|
|
############################################################
|
|
async def _on_message_received(msg: str):
|
|
nonlocal push_to_talk
|
|
nonlocal remote_video_processor
|
|
nonlocal current_message
|
|
nonlocal submitted_message
|
|
|
|
if msg == "{COMPLETE}":
|
|
chat_ctx = assistant.chat_ctx
|
|
log_message(f"[on_message_received] copied chat_ctx: {chat_ctx}")
|
|
|
|
# append image if available
|
|
if remote_video_processor and not video_muted:
|
|
video_frame = await remote_video_processor.get_current_frame()
|
|
if video_frame:
|
|
chat_ctx.append(role="user", images=[ChatImage(image=video_frame)])
|
|
log_message(f"[on_message_received] appended image: {video_frame} to chat_ctx: {chat_ctx}")
|
|
|
|
if isinstance(current_message.content, str):
|
|
chat_ctx.append(role=current_message.role, text=current_message.content)
|
|
|
|
# extend existing submitted_message content with the new message content
|
|
if submitted_message and isinstance(submitted_message.content, str):
|
|
submitted_message.content += current_message.content
|
|
else:
|
|
submitted_message = current_message
|
|
log_message(f"[on_message_received] appended message: {current_message.content}")
|
|
log_message(f"[on_message_received] submitted_message is now {submitted_message}")
|
|
log_message(f"[on_message_received] chat_ctx is now {chat_ctx}")
|
|
elif isinstance(current_message.content, ChatImage):
|
|
chat_ctx.append(role=current_message.role, images=[current_message.content])
|
|
log_message(f"[on_message_received] appended message: {current_message.content}")
|
|
log_message(f"[on_message_received] submitted_messages is now {submitted_message}")
|
|
log_message(f"[on_message_received] chat_ctx is now {chat_ctx}")
|
|
else:
|
|
log_message(f"[on_message_received] Unsupported message content type: {current_message}")
|
|
|
|
current_message = ChatMessage(role='user')
|
|
log_message(f"[on_message_received] current_message reset to {current_message}")
|
|
|
|
# Generate a response
|
|
stream = assistant.llm.chat(chat_ctx=chat_ctx)
|
|
await assistant.say(stream)
|
|
return
|
|
|
|
if msg == "{REQUIRE_START_ON}":
|
|
push_to_talk = True
|
|
return
|
|
|
|
if msg == "{REQUIRE_START_OFF}":
|
|
push_to_talk = False
|
|
return
|
|
|
|
# we copy chat_ctx here to handle the actual message content being sent to the LLM by the user
|
|
# _on_message_received is called once with the message request and then once with the {COMPLETE} message to trigger the actual LLM call
|
|
# so this copy is our default case where we just append the user's message to the chat_ctx
|
|
chat_ctx = assistant.chat_ctx
|
|
chat_ctx.append(role="user", text=msg)
|
|
log_message(f"[on_message_received] appended message: {msg} to chat_ctx: {chat_ctx}")
|
|
|
|
return
|
|
|
|
############################################################
|
|
# on_message_received callback
|
|
############################################################
|
|
@chat.on("message_received")
|
|
def on_chat_received(msg: rtc.ChatMessage):
|
|
log_message(f"Chat message received: {msg.message}")
|
|
if msg.message:
|
|
asyncio.create_task(_on_message_received(msg.message))
|
|
|
|
############################################################
|
|
# transcribe participant track
|
|
############################################################
|
|
async def transcribe_track(participant: rtc.RemoteParticipant, track: rtc.Track):
|
|
audio_stream = rtc.AudioStream(track)
|
|
stt_forwarder = STTSegmentsForwarder(
|
|
room=ctx.room, participant=participant, track=track
|
|
)
|
|
stt_stream = stt.stream()
|
|
stt_task = asyncio.create_task(
|
|
_forward_transcription(stt_stream, stt_forwarder)
|
|
)
|
|
tasks.append(stt_task)
|
|
|
|
async for ev in audio_stream:
|
|
stt_stream.push_frame(ev.frame)
|
|
|
|
############################################################
|
|
# on_track_subscribed callback
|
|
############################################################
|
|
@ctx.room.on("track_subscribed")
|
|
def on_track_subscribed(
|
|
track: rtc.Track,
|
|
publication: rtc.TrackPublication,
|
|
participant: rtc.RemoteParticipant,
|
|
):
|
|
log_message(f"Track subscribed: {track.kind}")
|
|
|
|
if track.kind == rtc.TrackKind.KIND_AUDIO:
|
|
tasks.append(asyncio.create_task(transcribe_track(participant, track)))
|
|
|
|
if track.kind == rtc.TrackKind.KIND_VIDEO:
|
|
nonlocal remote_video_processor
|
|
|
|
remote_video_stream = rtc.VideoStream(track=track, format=rtc.VideoBufferType.RGBA)
|
|
remote_video_processor = RemoteVideoProcessor(video_stream=remote_video_stream, job_ctx=ctx)
|
|
log_message("remote video processor." + str(remote_video_processor))
|
|
asyncio.create_task(remote_video_processor.process_frames())
|
|
|
|
############################################################
|
|
# on track muted callback
|
|
############################################################
|
|
@ctx.room.on("track_muted")
|
|
def on_track_muted(participant: rtc.RemoteParticipant, publication: rtc.TrackPublication):
|
|
nonlocal video_muted
|
|
if publication.kind == rtc.TrackKind.KIND_VIDEO:
|
|
video_muted = True
|
|
log_message(f"Track muted: {publication.kind}")
|
|
|
|
|
|
|
|
############################################################
|
|
# on track unmuted callback
|
|
############################################################
|
|
@ctx.room.on("track_unmuted")
|
|
def on_track_unmuted(participant: rtc.RemoteParticipant, publication: rtc.TrackPublication):
|
|
nonlocal video_muted
|
|
if publication.kind == rtc.TrackKind.KIND_VIDEO:
|
|
video_muted = False
|
|
log_message(f"Track unmuted: {publication.kind}")
|
|
|
|
############################################################
|
|
# Start the voice assistant with the LiveKit room
|
|
############################################################
|
|
assistant = VoicePipelineAgent(
|
|
vad=silero.VAD.load(),
|
|
stt=stt,
|
|
llm=open_interpreter,
|
|
tts=tts,
|
|
chat_ctx=initial_chat_ctx,
|
|
before_llm_cb=_before_llm_cb,
|
|
)
|
|
|
|
assistant.start(ctx.room)
|
|
await asyncio.sleep(1)
|
|
|
|
# Greets the user with an initial message
|
|
await assistant.say(start_message, allow_interruptions=True)
|
|
|
|
|
|
def main(livekit_url: str):
|
|
# Workers have to be run as CLIs right now.
|
|
# So we need to simualte running "[this file] dev"
|
|
|
|
# Modify sys.argv to set the path to this file as the first argument
|
|
# and 'dev' as the second argument
|
|
sys.argv = [str(__file__), 'dev']
|
|
|
|
# livekit_url = "ws://localhost:7880"
|
|
# Initialize the worker with the entrypoint
|
|
cli.run_app(
|
|
WorkerOptions(entrypoint_fnc=entrypoint, api_key="devkey", api_secret="secret", ws_url=livekit_url)
|
|
) |