You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.4 KiB
103 lines
3.4 KiB
3 months ago
|
import pyrealsense2 as rs
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
|
||
|
W = 848
|
||
|
H = 480
|
||
|
|
||
|
# Configure depth and color streams
|
||
|
pipeline = rs.pipeline()
|
||
|
config = rs.config()
|
||
|
config.enable_stream(rs.stream.depth, W, H, rs.format.z16, 30)
|
||
|
config.enable_stream(rs.stream.color, W, H, rs.format.bgr8, 30)
|
||
|
|
||
|
|
||
|
print("[INFO] start streaming...")
|
||
|
pipeline.start(config)
|
||
|
|
||
|
aligned_stream = rs.align(rs.stream.color) # alignment between color and depth
|
||
|
point_cloud = rs.pointcloud()
|
||
|
|
||
|
print("[INFO] loading model...")
|
||
|
# download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv
|
||
|
net = cv2.dnn.readNetFromTensorflow("frozen_inference_graph.pb", "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt")
|
||
|
while True:
|
||
|
frames = pipeline.wait_for_frames()
|
||
|
frames = aligned_stream.process(frames)
|
||
|
color_frame = frames.get_color_frame()
|
||
|
depth_frame = frames.get_depth_frame().as_depth_frame()
|
||
|
|
||
|
points = point_cloud.calculate(depth_frame)
|
||
|
verts = np.asanyarray(points.get_vertices()).view(np.float32).reshape(-1, W, 3) # xyz
|
||
|
|
||
|
# Convert images to numpy arrays
|
||
|
depth_image = np.asanyarray(depth_frame.get_data())
|
||
|
# skip empty frames
|
||
|
if not np.any(depth_image):
|
||
|
continue
|
||
|
print("[INFO] found a valid depth frame")
|
||
|
color_image = np.asanyarray(color_frame.get_data())
|
||
|
|
||
|
scaled_size = (int(W), int(H))
|
||
|
net.setInput(cv2.dnn.blobFromImage(color_image, size=scaled_size, swapRB=True, crop=False))
|
||
|
detections = net.forward()
|
||
|
|
||
|
print("[INFO] drawing bounding box on detected objects...")
|
||
|
|
||
|
for detection in detections[0,0]:
|
||
|
score = float(detection[2])
|
||
|
idx = int(detection[1])
|
||
|
print(" [DEBUG] classe : ",idx)
|
||
|
|
||
|
if score > 0.8 and idx == 0:
|
||
|
left = detection[3] * W
|
||
|
top = detection[4] * H
|
||
|
right = detection[5] * W
|
||
|
bottom = detection[6] * H
|
||
|
width = right - left
|
||
|
height = bottom - top
|
||
|
|
||
|
bbox = (int(left), int(top), int(width), int(height))
|
||
|
|
||
|
p1 = (int(bbox[0]), int(bbox[1]))
|
||
|
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
|
||
|
cv2.rectangle(color_image, p1, p2, (255, 0, 0), 2, 1)
|
||
|
|
||
|
# x,y,z of bounding box
|
||
|
obj_points = verts[int(bbox[1]):int(bbox[1] + bbox[3]), int(bbox[0]):int(bbox[0] + bbox[2])].reshape(-1, 3)
|
||
|
zs = obj_points[:,2]
|
||
|
|
||
|
z = np.median(zs)
|
||
|
|
||
|
ys = obj_points[:,1]
|
||
|
ys = np.delete(ys, np.where((zs < z - 1) | (zs > z + 1))) # take only y for close z to prevent including background
|
||
|
|
||
|
my = np.amin(ys, initial=1)
|
||
|
My = np.amax(ys, initial=-1)
|
||
|
|
||
|
height = (My - my) # add next to rectangle print of height using cv library
|
||
|
height = float("{:.2f}".format(height))
|
||
|
print("[INFO] object height is: ", height, "[m]")
|
||
|
height_txt = str(height)+"[m]"
|
||
|
|
||
|
# Write some Text
|
||
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
||
|
bottomLeftCornerOfText = (p1[0], p1[1]+20)
|
||
|
fontScale = 1
|
||
|
fontColor = (255, 255, 255)
|
||
|
lineType = 2
|
||
|
cv2.putText(color_image, height_txt,
|
||
|
bottomLeftCornerOfText,
|
||
|
font,
|
||
|
fontScale,
|
||
|
fontColor,
|
||
|
lineType)
|
||
|
|
||
|
# Show images
|
||
|
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
|
||
|
cv2.imshow('RealSense', color_image)
|
||
|
cv2.waitKey(1)
|
||
|
|
||
|
# Stop streaming
|
||
|
pipeline.stop()
|