|
|
|
from flask import Flask, request, jsonify
|
|
|
|
from flask_cors import CORS
|
|
|
|
from Algorithms.TargetFollower import TargetFollower
|
|
|
|
from Interfaces.DataProcessor import DataProcessor
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import base64
|
|
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
CORS(app)
|
|
|
|
|
|
|
|
data_processor = DataProcessor()
|
|
|
|
|
|
|
|
@app.route('/follow-vector', methods=['POST'])
|
|
|
|
def follow_vector():
|
|
|
|
try:
|
|
|
|
data = request.json
|
|
|
|
detections_info, annotated_image = data_processor.inline_detection(data)
|
|
|
|
|
|
|
|
if not detections_info and annotated_image is None:
|
|
|
|
return jsonify({'error': 'No detections found.'}), 400
|
|
|
|
|
|
|
|
# Указываем параметры камеры
|
|
|
|
image_height, image_width, _ = annotated_image.shape
|
|
|
|
camera_position = np.array([image_width / 2, image_height, 0])
|
|
|
|
|
|
|
|
# todo: add detections_info to the kafka topic
|
|
|
|
|
|
|
|
# Инициализируем TargetFollower и рассчитываем target вектор
|
|
|
|
follower = TargetFollower(detections_info, annotated_image, camera_position=camera_position)
|
|
|
|
selected_target = follower.select_target('person', nearest=True)
|
|
|
|
follow_vector = follower.calculate_follow_vector()
|
|
|
|
|
|
|
|
return jsonify({
|
|
|
|
'detections_info': detections_info,
|
|
|
|
'follow_vector': follow_vector.tolist()
|
|
|
|
})
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
return jsonify({'error': str(e)}), 500
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
app.run(host="0.0.0.0", port=5000, debug=True)
|