|
|
|
|
from Neko.RealSense import RealSenseController
|
|
|
|
|
import cv2
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
controller = RealSenseController()
|
|
|
|
|
model = YOLO('./models/yolov9e_object_classification.pt')
|
|
|
|
|
|
|
|
|
|
def inline_detection(controller):
|
|
|
|
|
depth_matrix = controller.acquisition.get_depth_image()
|
|
|
|
|
color_matrix = controller.acquisition.get_color_image()
|
|
|
|
|
|
|
|
|
|
if depth_matrix is None or color_matrix is None:
|
|
|
|
|
print("Не удалось получить изображения. Проверьте подключение камеры.")
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
results = model(color_matrix)
|
|
|
|
|
|
|
|
|
|
annotated_image = results[0].plot()
|
|
|
|
|
|
|
|
|
|
detections_info = []
|
|
|
|
|
|
|
|
|
|
for detection in results[0].boxes:
|
|
|
|
|
# Извлекаем координаты ограничивающей рамки
|
|
|
|
|
x1, y1, x2, y2 = map(int, detection.xyxy[0])
|
|
|
|
|
|
|
|
|
|
# Извлекаем класс объекта
|
|
|
|
|
class_id = int(detection.cls[0])
|
|
|
|
|
class_name = model.names[class_id]
|
|
|
|
|
|
|
|
|
|
# Извлекаем соответствующую область из карты глубины
|
|
|
|
|
depth_values = depth_matrix[y1:y2, x1:x2]
|
|
|
|
|
|
|
|
|
|
# Вычисляем среднее значение глубины
|
|
|
|
|
mean_depth = np.mean(depth_values)
|
|
|
|
|
|
|
|
|
|
# Сохраняем информацию в массив
|
|
|
|
|
detections_info.append({
|
|
|
|
|
'class_id': class_id,
|
|
|
|
|
'class_name': class_name,
|
|
|
|
|
'bbox': [x1, y1, x2, y2],
|
|
|
|
|
'mean_depth': float(mean_depth) # Преобразуем в стандартный float
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
# Наносим информацию на изображение
|
|
|
|
|
cv2.putText(annotated_image, f'{class_name} {mean_depth:.2f}m', (x1, y1 - 10),
|
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
|
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
|
# Сохраняем аннотированное изображение
|
|
|
|
|
output_path = './annotated_image.jpg'
|
|
|
|
|
cv2.imwrite(output_path, annotated_image)
|
|
|
|
|
print(f"Annotated image saved to {output_path}")
|
|
|
|
|
|
|
|
|
|
# Опционально: выводим массив с информацией
|
|
|
|
|
print("Detections info:")
|
|
|
|
|
for info in detections_info:
|
|
|
|
|
print(info)
|
|
|
|
|
|
|
|
|
|
return detections_info
|
|
|
|
|
|
|
|
|
|
def plot_3d_bounding_boxes(detections_info):
|
|
|
|
|
fig = plt.figure()
|
|
|
|
|
ax = fig.add_subplot(111, projection='3d')
|
|
|
|
|
|
|
|
|
|
for detection in detections_info:
|
|
|
|
|
# Извлекаем координаты бокса и среднюю глубину
|
|
|
|
|
x1, y1, x2, y2 = detection['bbox']
|
|
|
|
|
mean_depth = detection['mean_depth']
|
|
|
|
|
class_name = detection['class_name']
|
|
|
|
|
|
|
|
|
|
# Определяем размеры бокса
|
|
|
|
|
width = x2 - x1
|
|
|
|
|
height = y2 - y1
|
|
|
|
|
depth = 0.05 # Задаём фиксированную глубину для визуализации
|
|
|
|
|
|
|
|
|
|
# Определяем 8 точек для 3D-бокса
|
|
|
|
|
box_points = [
|
|
|
|
|
[x1, y1, mean_depth],
|
|
|
|
|
[x2, y1, mean_depth],
|
|
|
|
|
[x2, y2, mean_depth],
|
|
|
|
|
[x1, y2, mean_depth],
|
|
|
|
|
[x1, y1, mean_depth + depth],
|
|
|
|
|
[x2, y1, mean_depth + depth],
|
|
|
|
|
[x2, y2, mean_depth + depth],
|
|
|
|
|
[x1, y2, mean_depth + depth]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# Определяем грани бокса (шесть сторон)
|
|
|
|
|
faces = [
|
|
|
|
|
[box_points[0], box_points[1], box_points[5], box_points[4]], # Верхняя грань
|
|
|
|
|
[box_points[3], box_points[2], box_points[6], box_points[7]], # Нижняя грань
|
|
|
|
|
[box_points[0], box_points[3], box_points[7], box_points[4]], # Левая грань
|
|
|
|
|
[box_points[1], box_points[2], box_points[6], box_points[5]], # Правая грань
|
|
|
|
|
[box_points[0], box_points[1], box_points[2], box_points[3]], # Передняя грань
|
|
|
|
|
[box_points[4], box_points[5], box_points[6], box_points[7]] # Задняя грань
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# Добавляем бокс в виде параллелепипеда
|
|
|
|
|
box = Poly3DCollection(faces, facecolors='cyan', linewidths=1, edgecolors='r', alpha=0.25)
|
|
|
|
|
ax.add_collection3d(box)
|
|
|
|
|
|
|
|
|
|
# Добавляем метку с названием класса и глубиной
|
|
|
|
|
ax.text((x1 + x2) / 2, (y1 + y2) / 2, mean_depth + depth, f'{class_name} {mean_depth:.2f}m',
|
|
|
|
|
color='blue', fontsize=8)
|
|
|
|
|
|
|
|
|
|
# Настраиваем оси для лучшей визуализации
|
|
|
|
|
ax.set_xlabel("X")
|
|
|
|
|
ax.set_ylabel("Y")
|
|
|
|
|
ax.set_zlabel("Depth (m)")
|
|
|
|
|
ax.set_title("3D Bounding Boxes with Depth Information")
|
|
|
|
|
|
|
|
|
|
# Опционально: установить ограничения осей для лучшего отображения
|
|
|
|
|
all_x = [d['bbox'][0] for d in detections_info] + [d['bbox'][2] for d in detections_info]
|
|
|
|
|
all_y = [d['bbox'][1] for d in detections_info] + [d['bbox'][3] for d in detections_info]
|
|
|
|
|
all_z = [d['mean_depth'] for d in detections_info] + [d['mean_depth'] + 0.05 for d in detections_info]
|
|
|
|
|
|
|
|
|
|
ax.set_xlim(min(all_x) - 50, max(all_x) + 50)
|
|
|
|
|
ax.set_ylim(min(all_y) - 50, max(all_y) + 50)
|
|
|
|
|
ax.set_zlim(min(all_z) - 50, max(all_z) + 50)
|
|
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
def test_time_delta():
|
|
|
|
|
start_time = datetime.now()
|
|
|
|
|
detections_info = inline_detection(controller)
|
|
|
|
|
end_time = datetime.now()
|
|
|
|
|
delta_time = end_time - start_time
|
|
|
|
|
print(f"Время выполнения: {delta_time}")
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
detections_info = inline_detection(controller)
|
|
|
|
|
if detections_info:
|
|
|
|
|
plot_3d_bounding_boxes(detections_info)
|